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• The exam is scheduled to last 75 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed.  Please disable all connections from your calculator to other 

electronic devices. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 
• Please turn off all cell phones. 
• No headphones allowed. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

Problem Point Value Your score Topic 
1 28  Filter Analysis 
2 24  Sampling 
3 24  Audio Filter Design 
4 24  Potpourri 

Total 100   
 

 



Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) 
discrete-time filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] + c x[n-2] 

for n ≥ 0.  Coefficients a, b and c are real-valued.  In addition, a ≠ 0 and c ≠ 0. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 3 samples from n = 0 to n = 2, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = a x[0] + b x[-1] + c x[-2] 
Let n=1:  y[1] = a x[1] + b x[0] + c x[-1] 
Let n=2:  y[2] = a x[2] + b x[1] + c x[0]    and so forth. 
Initial conditions are x[-1] and x[-2] and must be zero for linearity and time-invariant 
properties to hold.  Note that x[0] is the first input value and not an initial condition. 
Note: A causal system does not depend on future input values, or current/future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 
 
 

 
 

 
 

(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points 
Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = a X(z) + b z -1 X(z) + c z -2 X(z) and 𝑯 𝒛 = 𝒀(𝒛)

𝑿(𝒛)
= 𝒂+ 𝒃 𝒛!𝟏 + 𝒄 𝒛!𝟐  for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  Justify the steps.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 
𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝒂+ 𝒃 𝒆!𝒋𝝎 + 𝒄 𝒆!𝟐𝒋𝝎 

(f) Determine formulas for the relationships among the filter coefficients to make the filter have 
generalized linear phase over all frequencies. Give a numeric value for each coefficient to achieve 
generalized linear phase, and indicate what the frequency selectivity is.  Hint:  Generalized linear 
phase means that the impulse response is odd symmetric about its midpoint.    6 points. 

For this question: h[n] = a δ[n] + b δ[n-1] + c δ[n-2].  
Odd symmetry a = -c and b = 0. Values:  a = 1, b = 0, c = -1. 
𝑯 𝒛 = 𝟏− 𝒛!𝟐  = 𝟏− 𝒛!𝟏 𝟏+ 𝒛!𝟏 .  Two poles at z = 0. 
Zeros at ω  = 0 rad/sample (z = 1) and ω  = π  rad/sample (z = -1) 
indicate stopbands.   Bandpass frequency selectivity (see right).  
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Problem 1.2.  Sampling.  24 points.  
For each problem below, determine the frequency (or frequencies) present in x(t) and y(t) as well as 
the single sampling rate you would use for the entire system to prevent aliasing. 

Please note that 𝑇! = 1 / 𝑓! and 𝑇! = 1 / 𝑓! in the following.  Each problem is worth 6 points. 

(a) Let 𝑥 𝑡 = cos 2𝜋𝑓!𝑡  be a continuous-time signal for −∞ < 𝑡 < ∞. 
 

 
x(t) has frequencies -fc and +fc.  y(t) = x2(t) = ½ + ½ cos(2 π  (2 fc) t).  
Or one could determine y(t) = x(t) x(t) by computing Y(f) = X(f) X(f) and inverse transform. 
y(t) has frequencies –2fc, 0, and +2fc.  Here, fmax = 2fc.  Sampling Theorem : fs > 2 fmax. 
Note: Because the component at 2 fc in y(t) is a cosine, one could use fs ≥ 2 fmax. 

(b) Let 𝑥 𝑡 = cos 2𝜋𝑓!𝑡  be a continuous-time signal for −∞ < 𝑡 < ∞.  
 
 

x(t) has frequencies -fc and +fc.   
Cascade of two squaring blocks.  First squaring block gives frequencies –2fc, 0, and +2fc. 
Second squaring block: –4fc, –2fc, 0, +2fc, +4fc.  Here, fmax = 4fc.  Choose fs > 2 fmax 

(c) Let 

𝑥 𝑡 = sinc
𝑡
𝑇!

 

be a continuous-time signal for −∞ < 𝑡 < ∞ 
whose continuous-time Fourier transform is 

𝑋 𝑓 = 𝑇! rect !
!!

     

Here, 𝑓! > 𝑓! 

   

 
 

 
 

(d) Let  

𝑥 𝑡 = cos 2𝜋𝑓!𝑡 sinc
𝑡
𝑇!

 

be a continuous-time signal for −∞ < 𝑡 < ∞ 
where 𝑓! > 𝑓!   
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Problem 1.3 Audio Filter Design.  24 points. 
This problem asks you to evaluate tradeoffs in two designs for a filter for a tweeter/treble speaker: 
• Speaker plays frequencies from roughly 2,000 Hz to 20,000 Hz. 
• A discrete-time highpass filter will be placed in the speaker before the 

digital-to-analog (D/A) converter 
• The D/A converter operates at a sampling rate of 48,000 Hz. 
Highpass filter design specifications: 
• Stopband frequency of 1800 Hz and passband frequency of 2000 Hz 
• Stopband attenuation of 80 dB and passband tolerance of 1 dB 
• Sampling rate of 48,000 Hz. 
Proposed filter design #1: Finite Impulse Response (FIR) Filter. 
Parks-McClellan (Equiripple) design. Order = 660. Meets specifications. 
Proposed filter design #2: Infinite Impulse Response (IIR) Filter. 
Elliptic (Equiripple) design. Order = 10. Meets specifications 
(a) Assuming the FIR filter is in direct form and the IIR filter is in a 

cascade of biquads (second-order sections), compute the number of 
multiplications per sample required by each.  6 points. 
FIR:  y[n] = h0 x[n] + h1 x[n - 1] + …. +  h660 x[n - 660] 
Needs 661 multiplications per output sample. 
Order is 660: H(z) = h0 + h1 z -1 + … + h660 z -660 

IIR: Cascade of 5 biquads to get 10th order filter. 
Biquad has 3 feedback and 2 feedforward coefficients, 
Total:  5 x 5 = 25 multiplications per output sample. 

(b) For the IIR filter design, the group delay for frequencies greater than 4,000 Hz is less than 7 
samples.  What is the group delay for the FIR filter in the same range?  6 points 
The Parks-McClellan FIR filter design would have linear phase. 
Its impulse response is even symmetric about its midpoint: 
𝐺𝐷 𝜔 = − !

!"
∠𝐻 𝜔 = !"#$"

!
= !!!

!
= 330 samples  

(c) For the IIR filter design, the largest group delay of 64–500 samples occurred over the range of 
2000 Hz to 2200 Hz.  Is there a way you would recommend to alter the filter specifications so that 
the group delay would be less than 64 throughout the entire passband?  6 points 
Max group delay (GD) over passband determined by using Matlab filter design analysis tool: 
1. Shift stopband freq. to 1600 Hz and passband freq. to 1800 Hz.  Max GD = 67.5 samples 
2. Shift stopband freq. to 500 Hz but keep passband freq. at 2000 Hz.  Max GD = 53 samples 
3. Reduce stopband attenuation to 12dB.  Not very selective.  Max GD = 38.9 samples 
4. Reduce filter order to 4 (i.e. reduce stopband freq. to 450 Hz).  Max GD = 34 samples 

(d) Which proposed filter design would you advocate using?   6 points. 
For the real-time application, use an IIR filter because it has 26 times lower complexity.  In 
audio, both linear phase and group delay are important.  The IIR filter has near linear phase 
over the passband.  With adjustments in part (c), the IIR group delay is 5 times lower.  

FIR Filter 

IIR Filter 

HW 1.3 2.3 3.2 



Problem 1.4.  Potpourri.  24 points. 
(a) You’d like to design a low-complexity lowpass finite impulse response (FIR) filter with an integer 

group delay. The two-tap averaging filter is a low-complexity lowpass FIR filter, but it has a group 
delay of ½ sample. Design two different low-complexity lowpass FIR filters with integer group 
delays based on the two-tap averaging filter. 6 points. 
For a linear phase FIR filter of N coefficients, the group delay is (N – 1) / 2 samples.  To have 
an integer group delay, N would need to be odd.  For computational complexity, an FIR filter 
takes N multiplications per output sample.  The lowest complexity possible is N = 3. 
Linear phase means the impulse response is either even or odd symmetric about its midpoint. 
For a three-coefficient lowpass FIR filter, we could use a  

i. three-coefficient averaging filter whose coefficients are {1, 1, 1} or { 1/3, 1/3, 1/3 }. 
ii. create a three-coefficient lowpass filter by cascading two two-tap averaging filters.  

The resulting impulse response would be {1, 2, 1} by convolving {1, 1} with itself. 
(b) Your system only has the ability to generate half of the carrier frequency you need for a 

communication system.  What signal processing operations would you add to generate the carrier 
frequency?  Draw a block diagram for your approach.  6 points. 
Continuous-time: Put sinusoidal signal 𝐜𝐨𝐬(𝟐𝝅(𝟏/𝟐 𝒇𝒄 )𝒕) through a squaring block which 
would produce frequencies –fc, 0, +fc.  Apply a DC notch or bandpass filter to remove 0 Hz. 
Discrete-time:  Use a similar approach as above in continuous-time.  Or use upsampling by 2. 

(c) We can use partial fractions decomposition to convert a transfer function into a parallel 
implementation.  Consider a second-order system with conjugate symmetric poles p0 and p1 and 
conjugate symmetric zeros z0 and z1. We can rewrite the second-order system as a sum of two first-
order sections assuming that the poles are not equal: 

𝐻 𝑧 =
(1− 𝑧!𝑧!!)(1− 𝑧!𝑧!!)
(1− 𝑝!𝑧!!)(1− 𝑝!𝑧!!)

=
1− 𝑐!𝑧!!

1− 𝑝!𝑧!!
+
1− 𝑐!𝑧!!

1− 𝑝!𝑧!!
 

Please note that constants c0 and c1 are complex-valued. 
i. How many real-valued multiplications per output sample are needed for the second-order 

system?  3 points.  

𝑯 𝒛 =
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

=
𝟏+ 𝒃𝟏𝒛!𝟏 + 𝒃𝟐𝒛!𝟐

𝟏+ 𝒂𝟏𝒛!𝟏 + 𝒂𝟐𝒛!𝟐
 

Coefficients a1, a2, b1, b2 are real-valued because poles/zeros are conjugate symmetric. 
Biquad will need 4 real multiplications per output sample. 

ii. How many real-valued multiplication operations per output sample are needed for the 
parallel combination of the two first-order sections?  3 points. 
Each first-order section requires 2 complex multiplications per output sample.  It takes 
4 real multiplications for a complex multiplications.  2 x 2 x 4 = 16 real multiplications. 

iii. Assuming that the two first-order sections can be executed in parallel, which realization 
requires fewer real-valued multiplications per output sample to compute?   3 points. 
Each first-order section needs 8 real multiplications.  The biquad requires fewer.  

iv. Repeat part iii assuming that poles p0 and p1, zeros z0 and z1, and constants c0 and c1 are real-
valued.  3 points.  Each first-order section would need 2 real multiplications, which are 
fewer than for the biquad. 

F19 Midterm #1 1.4(a)  
Lecture Slide 6-5  HW 3.3 


