The University of Texas at Austin
Dept. of Electrical and Computer Engineering Midterm \#1

Date: March 11, 2020
Course: EE 445S Evans

Name: \qquad

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets.
- Calculators are allowed. Please disable all connections from your calculator to other electronic devices.
- You may use any standalone computer system, i.e. one that is not connected to a network. Please disable all wireless connections on your computer system(s).
- Please turn off all cell phones.
- No headphones allowed.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	28		Filter Analysis
2	24		Sampling
3	24		Audio Filter Design
4	24		Potpourri
Total	100		

Problem 1.1 Filter Analysis. 28 points.
Consider the following causal linear time-invariant (LTI) discrete-time filter with input $x[n]$ and output $y[n]$ described by

$$
y[n]=a x[n]+b x[n-1]+c x[n-2]
$$

for $n \geq 0$. Coefficients a, b and c are real-valued. In addition, $a \neq 0$ and $c \neq 0$.
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? 3 points.
(b) What are the initial conditions and their values? Why? 6 points.
(c) Draw the block diagram of the filter relating input $x[n]$ and output $y[n] .6$ points.
(d) Derive a formula for the transfer function in the z-domain and the region of convergence. 4 points.
(e) Give a formula for the discrete-time frequency response of the filter. Justify the steps. 3 points.
(f) Determine formulas for the relationships among the filter coefficients to make the filter have generalized linear phase over all frequencies. Give a numeric value for each coefficient to achieve generalized linear phase, and indicate what the frequency selectivity is. Hint: Generalized linear phase means that the impulse response is odd symmetric about its midpoint. 6 points.

Problem 1.2. Sampling. 24 points.
For each problem below, determine the frequency (or frequencies) present in $x(t)$ and $y(t)$ as well as the single sampling rate you would use for the entire system to prevent aliasing.
Please note that $T_{c}=1 / f_{c}$ and $T_{0}=1 / f_{0}$ in the following. Each problem is worth 6 points.
(a) Let $x(t)=\cos \left(2 \pi f_{c} t\right)$ be a continuous-time signal for $-\infty<t<\infty$.

(b) Let $x(t)=\cos \left(2 \pi f_{c} t\right)$ be a continuous-time signal for $-\infty<t<\infty$.

(c) Let
$x(t)=\operatorname{sinc}\left(\frac{t}{T_{0}}\right)$
be a continuous-time signal for $-\infty<t<\infty$ whose continuous-time Fourier transform is

$$
X(f)=T_{0} \operatorname{rect}\left(\frac{f}{f_{0}}\right)
$$

Here, $f_{c}>f_{0}$

$\cos \left(2 \pi f_{c} t\right)$
(d) Let
$x(t)=\cos \left(2 \pi f_{c} t\right) \operatorname{sinc}\left(\frac{t}{T_{0}}\right)$
be a continuous-time signal for $-\infty<t<\infty$ where $f_{c}>f_{0}$

Problem 1.3 Audio Filter Design. 24 points.
This problem asks you to evaluate tradeoffs in two designs for a filter for a tweeter/treble speaker:

- Speaker plays frequencies from roughly $2,000 \mathrm{~Hz}$ to $20,000 \mathrm{~Hz}$.
- A discrete-time highpass filter will be placed in the speaker before the digital-to-analog (D/A) converter
- The D/A converter operates at a sampling rate of $48,000 \mathrm{~Hz}$.

Highpass filter design specifications:

- Stopband frequency of 1800 Hz and passband frequency of 2000 Hz
- Stopband attenuation of 80 dB and passband tolerance of 1 dB
- Sampling rate of $48,000 \mathrm{~Hz}$.

Proposed filter design \#1: Finite Impulse Response (FIR) Filter.
Parks-McClellan (Equiripple) design. Order $=660$. Meets specifications.
Proposed filter design \#2: Infinite Impulse Response (IIR) Filter.
Elliptic (Equiripple) design. Order $=10$. Meets specifications.
(a) Assuming the FIR filter is in direct form and the IIR filter is in a cascade of biquads (second-order sections), compute the number of multiplications per sample required by each. 6 points.

IIR Filter

(b) For the IIR filter design, the group delay for frequencies greater than $4,000 \mathrm{~Hz}$ is less than 7 samples. What is the group delay for the FIR filter in the same range? 6 points
(c) For the IIR filter design, the largest group delay of 64-500 samples occurred over the range of 2000 Hz to 2200 Hz . Is there a way you would recommend to alter the filter specifications so that the group delay would be less than 64 throughout the entire passband? 6 points
(d) Which proposed filter design would you advocate using? 6 points.

Problem 1.4. Potpourri. 24 points.
(a) You'd like to design a low-complexity lowpass finite impulse response (FIR) filter with an integer group delay. The two-tap averaging filter is a low-complexity lowpass FIR filter, but it has a group delay of $1 / 2$ sample. Design two different low-complexity lowpass FIR filters with integer group delays based on the two-tap averaging filter. 6 points.
(b) Your system only has the ability to generate half of the carrier frequency you need for a communication system. What signal processing operations would you add to generate the carrier frequency? Draw a block diagram for your approach. 6 points.
(c) We can use partial fractions decomposition to convert a transfer function into a parallel implementation. Consider a second-order system with conjugate symmetric poles p_{0} and p_{1} and conjugate symmetric zeros z_{0} and z_{1}. We can rewrite the second-order system as a sum of two firstorder sections assuming that the poles are not equal:

$$
H(z)=\frac{\left(1-z_{0} z^{-1}\right)\left(1-z_{1} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)\left(1-p_{1} z^{-1}\right)}=\frac{1-c_{0} z^{-1}}{1-p_{0} z^{-1}}+\frac{1-c_{1} z^{-1}}{1-p_{1} z^{-1}}
$$

Please note that constants c_{0} and c_{1} are complex-valued.
i. How many real-valued multiplications per output sample are needed for the second-order system? 3 points.
ii. How many real-valued multiplication operations per output sample are needed for the parallel combination of the two first-order sections? 3 points.
iii. Assuming that the two first-order sections can be executed in parallel, which realization requires fewer real-valued multiplications per output sample to compute? 3 points.
iv. Repeat part iii assuming that poles p_{0} and p_{1}, zeros z_{0} and z_{1}, and constants c_{0} and c_{1} are realvalued. 3 points.

