
 

The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 

Midterm #1 Solutions Version 2.0 

 

Date: March 9, 2022     Course: EE 445S Evans 

 

 

 

Name:     Matrix    The    

Last,      First   

 

 

 Exam duration.  The exam is scheduled to last 75 minutes. 

 Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

 Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

 Electronics.  Power down phones. No headphones. Mute your computer systems. 

 Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

 Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

 Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

 Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except your instructor, Prof. Evans, 

and that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 Problem Point Value Your score Topic 
Morpheus 1 24  Sinusoidal Generation 

Neo 2 26  Filter Analysis 
Trinity  3 26  Chromagram Filter Design 

Agent Smith 4 24  Mystery Systems 

 Total 100   

  



Problem 1.1.  Sinusoidal Generation.  24 points.  

You’re asked to generate one period of a discrete-time sine signal 𝑦[𝑛] = sin(𝜔0𝑛): 

 The continuous-time frequency is 196 Hz (‘G’ note on the Western scale in the third octave). 

 The sampling rate 𝑓𝑠  is 8000 Hz. 

(a) What is the discrete-time frequency 𝜔0 in rad/sample of the discrete-time sine signal?  4 points. 

𝒚(𝒕) = 𝐬𝐢𝐧(𝟐 𝝅 𝒇𝟎 𝒕) where 𝒇𝟎 = 𝟏𝟗𝟔 𝐇𝐳. 

𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔) = 𝒚 (
𝒏

𝒇𝒔
) = 𝐬𝐢𝐧 (𝟐 𝝅 

𝒇𝟎

𝒇𝒔
 𝒏) = 𝐬𝐢𝐧(𝝎𝟎 𝒏)  

where 𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝟏𝟗𝟔

𝟖𝟎𝟎𝟎
  is the discrete-time frequency in rad/sample. 

(b) What is the fundamental period of the discrete-time sine signal in samples?   4 points. 

Per the Handout on Discrete-Time Periodicity, a sinusoidal signal with discrete-time 

frequency, where the common factors between integers N and L have been removed, 

𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝑵

𝑳
 

has a discrete-time fundamental period of L samples: 

𝝎𝟎 = 𝟐 𝝅 
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅 

𝟏𝟗𝟔 𝐇𝐳

𝟖𝟎𝟎𝟎 𝐇𝐳
= 𝟐 𝝅 

𝟒𝟗

𝟐𝟎𝟎𝟎 
 

In the discrete-time period of L = 2000 samples, there are N = 49 continuous-time periods of 

a continuous-time sinusoidal signal at frequency 𝒇𝟎. 

(c) Give a difference equation whose impulse response will generate the discrete-time sine signal. 

4 points.  From lab #2, y[n] = (2 cos 0) y[n-1] - y[n-2] + (sin 0) x[n-1] for 𝒏 ≥ 𝟎 with initial 

conditions y[-1], y[-2], and x[-1] being zero as necessary conditions for LTI to hold.  This 

difference equation comes from 𝒁{ 𝐬𝐢𝐧(𝝎𝟎𝒏) 𝒖[𝒏] } =
𝐬𝐢𝐧(𝝎𝟎) 𝒛−𝟏

𝟏 − 𝟐 𝐜𝐨𝐬(𝝎𝟎) 𝒛−𝟏 + 𝒛−𝟐  𝐟𝐨𝐫 |𝒛| > 𝟏. 

(d) An alternate method to compute the amplitude value is to use the Taylor series expansion for the 

sine function 

sin(𝜃) = 𝜃 −
1

3!
𝜃3 +

1

5!
𝜃5 −

1

7!
𝜃7 +

1

9!
𝜃9 − ⋯ 

and keep a finite number of terms.  For good quality over one period of 𝜃, we’ll need 17 terms, i.e. 

from the 𝜃 term to the 𝜃33 term. 

Compare the run-time complexity for the difference equation and the lookup table method.  The 

lookup table would store an entire period of sine values computed offline.  12 points. 

Method Total Memory 

Needed 

Multiplications 

per output sample 

Reads per 

output sample 

Writes per 

output sample 

Taylor series 18 291 19 1 

Difference equation 7 2 6 4 

Lookup table 2000 0 1 1 

Taylor series method would compute 𝜽 = 𝝎𝟎 𝒏 using 1 multiplication, and perform a modulo 

operation (1 multiplication by 𝟏/(𝟐𝝅) and 1 additional multiplication) to get the value of 

angle 𝜽 in the first period of [𝟎, 𝟐𝝅). For a Taylor series expansion with N non-zero terms, 

𝐬𝐢𝐧(𝜽) = 𝜽 −
𝟏

𝟑!
𝜽𝟑 +

𝟏

𝟓!
𝜽𝟓 −

𝟏

𝟕!
𝜽𝟕 +

𝟏

𝟗!
𝜽𝟗 − ⋯ 

Lectures 1 & 4 Lab 2 

HW 0.3, 0.4, 1.1(d) & 2.1(d)  

Fall 2021 Midterm 1.1 & Fall 2016 Midterm 1.2 

Lecture Slides 1-16 and 1-19 to 1-22  

Discrete-Time Periodicity Handout 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf


we’ll assume the constants 𝟏/𝒎! have been computed offline. When 𝑵 = 𝟏, 𝐬𝐢𝐧(𝜽) = 𝜽 does 

not need any multiplications; 𝑵 = 𝟐 terms needs 3 mults; 𝑵 = 𝟑 needs 3+5=8 mults; 𝑵 = 𝟓 

needs 3+5+7=15 mults; 𝑵 = 𝟕 needs 3+5+7+9=24 mults; or (𝑵 + 𝟏)(𝑵 − 𝟏) mults in general. 

Difference equation contains two constants, previous input value, current output value, two 

previous output values.  The current input is stored into the previous input value.  Total 

memory of 7 words.  The difference equation has two multiplications (2 cos 0) y[n-1] and 

(sin 0) x[n-1] per output sample.  To compute y[n], the other six values have to be read once 

each.  Also, we’ll need to write the result y[n], and update y[n-1], y[n-2] and x[n-1]. 

Lookup table stores one period of 𝑳 = 𝟐𝟎𝟎𝟎 samples. We use 𝒏 = 𝟎, 𝟏, … , 𝑳 − 𝟏 to read the 

precomputed value from the table for 𝐬𝐢𝐧(𝝎𝟎 𝒏) and write it out as y[n]. 

 

Epilogue for part (d): Although not asked, we can reduce the number of multiplications by 

using Horner’s form of the series expansion which results from iteratively factoring out 𝜽𝟐: 

𝐬𝐢𝐧(𝜽) = 𝜽 − 𝜽𝟐 (
𝟏

𝟑!
𝜽 +

𝟏

𝟓!
𝜽𝟑 −

𝟏

𝟕!
𝜽𝟓 +

𝟏

𝟗!
𝜽𝟕 − ⋯ ) 

𝐬𝐢𝐧(𝜽) = 𝜽 − 𝜽𝟐 (
𝟏

𝟑!
𝜽 + 𝜽𝟐 (

𝟏

𝟓!
𝜽 −

𝟏

𝟕!
𝜽𝟑 +

𝟏

𝟗!
𝜽𝟓 − ⋯ )) 

In this case, Horner’s form would have a nested structure of 𝒂𝒏𝜽 + 𝒃𝒏𝜽𝟐 for 𝒏 ∈ [𝟐, 𝑵].  The 

𝑵 − 𝟏 nested terms would need 𝟐(𝑵 − 𝟏) multiplications.  We need one multiplication to 

compute 𝜽𝟐, for a total of 𝟐(𝑵 − 𝟏) + 𝟏 multiplications.  For N = 17 terms, 33 multiplications 

would be needed for the polynomial calculation, plus 3 multiplications for the calculation of 

𝜽 = 𝝎𝟎 𝒏 and the modulo operation, for a total of 36 multiplications. 

  

Taylor series expansion is about the origin, i.e. 𝜽 = 𝟎.  

For the Taylor series to provide a good fit to 𝐬𝐢𝐧(𝜽) for 

𝜽 ∈ [𝟎, 𝟐𝛑], 17 terms are needed; however, to provide a 

good fit for 𝜽 ∈ [−𝝅, 𝝅], only 4 terms are needed (from 

the 𝜽 to the 𝜽𝟕 terms).  This makes sense because the 

Taylor series expansion is about 𝜽 = 𝟎.  See 

https://en.wikipedia.org/wiki/Taylor_series and below. 

theta = -2*pi : (4*pi)/1000 : 2*pi; 

maxi = 17; 

sinapprox = zeros(maxi, length(theta)); 

sinapprox(1,:) = theta; 

for i = 2 : maxi 

    term = theta.^(2*i-1) / factorial(2*i-1); 

    sinapprox(i,:) = sinapprox(i-1,:) + (-1)^(i+1) * term; 

end 

plot(theta, sin(theta), '-', ... 

     theta, sinapprox(4,:), '--', ... 

     theta, sinapprox(maxi,:), '--'); 

xlabel('theta'); 

ylim([-2, 2]); 

legend('sin(theta)', 'with 4 terms', 'with 17 terms' ); 

  

In Matlab, the pattern of three 

dots ... means that the command 

continues on the next line. 

 

https://en.wikipedia.org/wiki/Taylor_series


Problem 1.2 Filter Analysis.  26 points.  

In an electric oven, transfer of energy from a heating element to food is governed by the heat equation. 

However, an approximate model is given by the following causal linear time-invariant discrete-time 

filter with input 𝑥[𝑛] and output 𝑦[𝑛] 

𝑦[𝑛] = ∑
𝑥[𝑚]

𝛼𝑛−𝑚

𝑛−1

𝑚=0

  for 𝑛 ≥ 0 

where 𝑥[𝑛] represents the power delivered to the heating element, 𝛼 is the thermal diffusivity, and 

𝑦[𝑛] represents the temperature of the food where a temperature of 0 means room temperature. 

We expand the summation as follows 

𝑦[𝑛] =
1

𝛼
𝑥[𝑛 − 1] +

1

𝛼2
𝑥[𝑛 − 2] + ⋯     for 𝑛 ≥ 0 

and convert 𝑦[𝑛] to a recursive difference equation 

𝑦[𝑛] =
1

𝛼
𝑥[𝑛 − 1] +

1

𝛼
𝑦[𝑛 − 1]  for 𝑛 ≥ 0 

For this problem, assume that 𝛼 = 2.  We observe the system starting at 𝑛 = 1. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

(a) Assume that the food is initially at room temperature.  What are the initial conditions and their values? 

Why?  4 points.  We observe system starting at 𝒏 = 𝟏:  𝒚[𝟏] =
𝟏

𝟐
𝒙[𝟎] +

𝟏

𝟐
𝒚[𝟎].  Initial conditions 

𝒙[𝟎] and 𝒚[𝟎] should be 0 as necessary conditions for linear and time-invariance (LTI) to hold. 

(b) Give a formula for the impulse response of the filter ℎ[𝑛].  Simplify any summations.  6 points. 

To find the impulse response, input an impulse signal, i.e. let 𝒙[𝒏] = 𝜹[𝒏]: 

𝒉[𝒏] =
𝟏

𝟐
𝜹[𝒏 − 𝟏] +

𝟏

𝟐
𝒉[𝒏 − 𝟏]  𝐟𝐨𝐫 𝒏 ≥ 𝟏 

where the initial condition 𝒉[𝟎] = 𝟎.  We can compute this iteratively 𝐟𝐨𝐫 𝒏 ≥ 𝟏 

𝒉[𝟏] =
𝟏

𝟐
𝜹[𝟎] +

𝟏

𝟐
𝒉[𝟎] =

𝟏

𝟐
 and 𝒉[𝟐] =

𝟏

𝟐
𝜹[𝟏] +

𝟏

𝟐
𝒉[𝟏] =

𝟏

𝟐𝟐  etc. 

𝒉[𝒏] =
𝟏

𝟐𝒏
 𝒖[𝒏 − 𝟏] = (

𝟏

𝟐
)

𝒏

𝒖[𝒏 − 𝟏] 

(c) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  4 points. 

IIR due to feedback.  That is, the output 𝒚[𝒏] depends on the previous output value 𝒚[𝒏 − 𝟏]. 

(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  6 points. 

Solution #1: Take the z-transform of the impulse response. 

𝑯(𝒛) = 𝒁 {(
𝟏

𝟐
)

𝒏

𝒖[𝒏 − 𝟏]} =
𝟏

𝟐
 𝒁 {(

𝟏

𝟐
)

𝒏−𝟏

𝒖[𝒏 − 𝟏]} =
𝟏

𝟐
 𝒛−𝟏 𝒁 {(

𝟏

𝟐
)

𝒏

𝒖[𝒏]} =
𝟏

𝟐
 𝒛−𝟏

𝟏−
𝟏

𝟐
 𝒛−𝟏

  for |𝒛| >
𝟏

𝟐
 

Solution #2: Take the z-transform of the difference equation. 

𝒀(𝒛) =
𝟏

𝟐
𝒛−𝟏 𝑿(𝒛) +

𝟏

𝟐
𝒛−𝟏 𝒀(𝒛) which gives 𝑯(𝒛) =

𝒀(𝒛)

𝑿(𝒛)
=

𝟏

𝟐
 𝒛−𝟏

𝟏−
𝟏

𝟐
 𝒛−𝟏

  for |𝒛| >
𝟏

𝟐
 

(e) Give the frequency selectivity of filter (lowpass, highpass, bandpass, bandstop, allpass, notch) and 

explain your reasoning.  6 points.  The transfer function has a pole at z = ½ and a zero at z = 0.  

Pole angle of 0 rad/sample gives center of passband.  This corresponds to a lowpass filter. 

Lecture 3 5 & 6 

 

In-Lecture #2 Assignment 

 
HW 0.4 1.1 2.1 & 3.3 

 

Lab 3 

Midterm Problem 1.1: Spring 2018, Spring 2017, Fall 2015  



Problem 1.3 Chromagram Filter Design.  26 points.  

The notes on the Western scale on an 88-key piano keyboard grouped into octaves follow: 

 

 

 

 

The frequency of note A3 (i.e. ‘A’ in the 3rd octave) at 220 Hz is twice the frequency of A2 at 110 Hz. 

This type of octave spacing occurs for all the notes on the Western scale. 

For this problem, assume that the sampling rate 𝑓𝑠  is 16,000 Hz. 

When poles and zeros are separated in angle, the angles of poles 

near but inside the unit circle indicate passband frequencies and 

the angles of the zeros on or near the unit circle indicate the 

stopband frequencies, per lecture 6 slides 6-8 to 6-10. 

(a) Design a second-order infinite impulse response (IIR) to 

extract the note A5 (880.0 Hz). The filter should suppress 

all other frequencies including the neighboring notes 

G#5 (830.6 Hz) and A#5 (932.3 Hz). 12 points. 

i. Give formulas for the pole and zero locations.  

ii. Plot poles and zeros on the diagram on the right. 

Two zeros at 𝒛 = ±𝟏 and two poles at 𝒛 = 𝟎. 𝟗𝟓 𝒆±𝒋 𝝎𝑨𝟓 where 𝝎𝑨𝟓 = 𝟐𝝅 ×
𝟖𝟖𝟎

𝟏𝟔𝟎𝟎𝟎
 

(b) To extract the note A4, how would the design of the filter in part (a) change?   6 points. 

Use 𝝎𝑨𝟒 = 𝟐𝝅 ×
𝟒𝟒𝟎

𝟏𝟔𝟎𝟎𝟎
 for placement of the poles, which is half the angles of the poles in (a).  

Poles will move toward the real axis but at the same magnitude as the poles in (a). 

(c) Design a first-order discrete-time IIR filter to perform the following smoothing operation  

𝑦𝐴[𝑛] = Smooth{𝑣[𝑛]}  where  𝑣[𝑛] = ∑(𝑥[𝑛] ∗ ℎ𝐴𝑘
[𝑛])

2
6

𝑘=1

 

where ℎ𝐴𝑘
[𝑛] is the impulse response of an IIR filter that extracts the note Ak from audio signal 

𝑥[𝑛], and 𝑦𝐴[𝑛] is the output of the smoothing filter for A notes A1, A2, … A6. This operation is 

used to construct a chromagram to analyze musical recordings.  8 points. 

A smoothing filter is a lowpass filter; that is, it smooths out sudden changes in the data which 

corresponding to high-frequency information.  In class, we have seen examples of applying 

an averaging filter, which is a lowpass filter, to create a seven-day moving average of new 

COVID-19 cases in the Designing Averaging Filters handout and smooth/blur an image in 

the “Cascading Two FIR Filters” DSP First demo mentioned in lecture 5 slide 5-21. 

For a first-order IIR filter, place the pole at 𝒛 =  𝟎. 𝟗 for a passband centered at 0 rad/sample 

and the zero at 𝒛 =  −𝟏 for a stopband centered at 𝝅 rad/sample. 

We had seen a similar lowpass first-order IIR filter in a DSP First demo (more on next page). 

Re(z) 

Im(z) 

X 

X 

O O 

F 2021 Midterm 1.3 

F 2019 Midterm 1.3(a) 

Sp 2017 Midterm 1.3 

Lecture Slides 6-5 to 6-10 

 

In-Lecture #2 Assignment 

 
HW 1.1 2.1 2.2 2.3 & 3.1 

 

Labs 2 & 3 

Lecture Slides 

5-21 to 5-25 

 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
https://en.wikipedia.org/wiki/Chroma_feature
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
https://dspfirst.gatech.edu/chapters/06firfreq/demos/blockd/index.html
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/05_FIR_Filters/lecture5.pptx


 
 

DSP First “Three-Domain Connections” demo “IIR filter with one pole and one zero.” 

In this demo, the pole is at 𝒛 = 𝟎. 𝟕𝟓 and the zero is at 𝒛 = −𝟏 for a lowpass response. 

See lecture 6 slide 6-10. 

 

 

Epilogue:  From Wikipedia "Chroma Feature" (Chromagram): 

“In Western music, the term chroma feature or chromagram closely relates to the twelve 

different pitch classes. Chroma-based features, which are also referred to as "pitch class profiles", are 
a powerful tool for analyzing music whose pitches can be meaningfully categorized (often into twelve 
categories) and whose tuning approximates to the equal-tempered scale. One main property of 
chroma features is that they capture harmonic and melodic characteristics of music, while being robust 

to changes in timbre and instrumentation.” 

The chromagram (as shown on the right) is a 

tool used to analyze musical recordings based 

on the equal temperament scale. It is similar to 

the spectrogram except that it has exactly 

twelve frequency bins (corresponding to 

twelve notes on the Western scale). For each 

note, all harmonics are combined into the 

same frequency bin.  

 

  

https://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.ppt
https://en.wikipedia.org/wiki/Chroma_feature
https://en.wikipedia.org/wiki/Music
https://en.wikipedia.org/wiki/Pitch_classes
https://en.wikipedia.org/wiki/Harmonic_pitch_class_profiles
https://en.wikipedia.org/wiki/Equal_temperament


Problem 1.4.  Mystery Systems.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 4000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 4000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

4000 Hz

10 𝑠
= 400 Hz2.  Sampling rate 𝑓𝑠  is 8000 Hz. 

In each part below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. upsampler – give upsampling factor 

3. downsampler – give downsampling factor 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points. 

 

From the output spectrogram, frequencies from about 900 to 2100 Hz are passed.  

Principal frequencies below 900 Hz and above 2100 Hz are severely attenuated.  In the 

grayscale color map, white has highest magnitude value.  This is a bandpass filter. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right). 12 points.  

 

When compared to the input spectrogram, the output spectrogram has about one-third the 

range of frequencies values and the principal frequency is a chirp pattern that is wider and 

that has aliasing.  Downsampling by 3 per homework problem 2.2(d). 

HW 1.2 1.3 & 2.2 In-Lecture #1 Assignment 

Handout Common Signals in Matlab 

Midterm 1: 1.4 Sp11, 1.3 Sp15, 1.5 Sp19, 1.4 F19, 1.4 Sp20, 1.4 F21 

Lecture 4 

HW 0.1 1.1 

1.3 2.1 & 2.2 

Lab #3 

Lectures 

1 3 5 & 6 

JSK Ch. 7 

Midterm 1.1 

F 2020 

Sp 2020 

F 2018 

Designing 

Averaging 

Filters 

HW 0.3 & 2.2 

Lecture 

4 

Midterm 

Problems 

1.2 F 18 

1.2(d) Sp 18 

1.2(d) F 09 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf


Epilogue:  Matlab code to generate the spectrograms for problem 1.4. 

 

(a) Bandpass filter 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% Design lowpass filter 

fnyquist = fs/2; 

fstop1 =  900; 

fpass1 = 1100; 

fpass2 = 1900; 

fstop2 = 2100; 

ctfrequencies = [0 fstop1 fpass1 fpass2 fstop2 fnyquist]; 

idealAmplitudes = [0 0 1 1 0 0]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 200; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

%%% Plot spectrogram of signal 

blockSize = 1024;  

overlap = 1023; 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

 

(b) Downsampling by 3 

fs = 8000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

%% Downsampling by 3 

y = x(1:3:end); 

blockSize = 1024; 

overlap = 1023; 

spectrogram(y, blockSize, overlap, blockSize, fs/3, 'yaxis'); 

 


