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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• Electronics.  Power down phones. No headphones. Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 Problem Point Value Your score Topic 

Jason 1 25  IIR Filter Analysis 

Eleanor 2 24  Increasing the Sampling Rate 

Chidi 3 27  Equalizer Design 

Tahani 4 24  Potpourri 

 Total 100   

  



Problem 1.1 IIR Filter Analysis.  25 points. 

Consider the following causal linear time-invariant (LTI) discrete-time infinite impulse response (IIR) 

filter with input x[n] and output y[n] described by 

𝑦[𝑛] − 𝑏2  𝑦[𝑛 − 2] = 𝑥[𝑛] 

for n  0, where b is a real-valued positive coefficient less than one, i.e. 0 < 𝑏 < 1. 

Please note that the coefficient in front of the y[n-1] term is zero. 

(a) What are the initial conditions and their values?  Why?  6 points. 

   Consider 𝒏 = 𝟎:  𝒚[𝟎] = 𝒃𝟐 𝒚[−𝟐] + 𝒙[𝟎] 

    Initial Condition 

Consider 𝒏 = 𝟏: 𝒚[𝟏] = 𝒃𝟐 𝒚[−𝟏] + 𝒙[𝟏] 

    Initial Condition 

Our initial conditions must equal zero as necessary conditions for LTI to hold: 

𝒚[−𝟐] = 𝒚[−𝟏] = 𝟎 

 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 

 

(c) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

 

𝒀(𝒛) = 𝒃𝟐𝒛−𝟐 𝒀(𝒛) + 𝑿(𝒛)  take z-Transform of 𝒚[𝒏] = 𝒃𝟐 𝒚[𝒏 − 𝟐] + 𝒙[𝒏] 
𝒀(𝒛) − 𝒃𝟐𝒛−𝟐 𝒀(𝒛) = 𝑿(𝒛) 

𝒀(𝒛)(𝟏 − 𝒃𝟐𝒛−𝟐) = 𝑿(𝒛)  combine like terms 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=

𝟏

𝟏 − 𝒃𝟐 𝒛−𝟐  recall the transfer function is 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
 

poles are at 𝒛 = 𝒃 and 𝒛 = −𝒃. 

𝑯(𝒛) =
𝟏

(𝟏−𝒃 𝒛−𝟏)(𝟏+𝒃 𝒛−𝟏)
, 𝒇𝒐𝒓 |𝒛| > 𝒃 final answer 

 

  



(d) Give a formula for the discrete-time frequency response of the filter.  3 points. 

 

We substitute 𝒛 = 𝒆𝒋𝝎, because the unit circle is contained inside the Region of 

Convergence |𝒛| > 𝒃 where 𝟎 < 𝒃 < 𝟏: 

𝑯(𝒆𝒋𝒘) =
𝟏

(𝟏 − 𝒃𝒆−𝒋𝝎)(𝟏 + 𝒃𝒆−𝒋𝝎)
=

𝟏

𝟏 − 𝒃𝟐𝒆−𝒋𝟐𝝎
 

 

(e) What frequency responses are possible among lowpass, highpass, bandpass, bandstop, allpass and 

notch?  For each possibility, give a value of 𝑏 that would give that response.  6 points. 

From our transfer function, 𝑯(𝒛) =
𝟏

𝟏−𝒃𝟐𝒛−𝟐 =
𝒛𝟐

𝒛𝟐−𝒃𝟐 

Thus, we know that… 

• 2 zeros exist at 𝒛 = 𝟎 

• 2 poles exist at 𝒑 = ±𝒃 

 

Consider as b→1 

The 2 poles 𝒑𝟎→𝟏, 𝒑𝟏→ − 𝟏 
(Note that the 2 poles are not equal to 1! Because then the poles would be on the unit circle, 

and we would encounter Bounded-Input Bounded-Ouput instability issues.) 

With these pole locations, it means the poles are amplifying low and high 

frequencies. 

Thus, we can see that this as a bandstop filter. 

Consider as b→0 

The 2 poles approach  𝒑𝟎 = 𝒑𝟏 = 𝟎 

Now the 2 zeros and the 2 poles are on the same location, cancelling out. 

Thus, we can see that this as an allpass filter. 



Problem 1.2 Increasing the Sampling Rate.  24 points. 

Upsampling by L can be used to increase the sampling 

rate of the input signal by a factor of L. 
 

A lowpass finite impulse response (FIR) filter can then 

be applied to the output of the upsampler to attenuate 

the high frequencies introduced by upsampling. 
 

On the right, discrete-time index 𝑛 is associated with 

sampling rate 𝑓𝑠 and discrete-time index 𝑚 is associated with sampling rate 𝐿 𝑓𝑠 . 

(a) What is the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 that is present in 𝑥[𝑛]?  What discrete-time 

frequency does 𝑓𝑚𝑎𝑥  correspond to?  6 points. 

𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) , 𝒇𝒐𝒓 − ∞ < 𝒕 < ∞ 

𝒙(𝒕) = 𝐜𝐨𝐬 (𝟐𝝅𝒇𝟎 (
𝒏

𝒇𝒔
)) 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎

𝒇𝒔
 

 

From Nyquist Theorem, we require that 𝒇𝒔 > 𝟐𝒇𝒎𝒂𝒙 

Thus, we have the continuous-time frequency is: 

𝒇𝒎𝒂𝒙 <
𝟏

𝟐
𝒇𝒔 

 

And the corresponding discrete-time frequency is: 

𝝎𝒎𝒂𝒙 = 𝟐𝝅
𝒇𝒎𝒂𝒙

𝒇𝒔
= 𝟐𝝅

(
𝟏
𝟐 𝒇𝒔)

𝒇𝒔
= 𝝅 

Thus, from sampling, we can capture a frequency range of… 

−
𝟏

𝟐
𝒇𝒔 < 𝒇 <

𝟏

𝟐
𝒇𝒔 (𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒕𝒊𝒎𝒆 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒊𝒆𝒔) 

−𝝅 < 𝝎 < 𝝅 (𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 − 𝒕𝒊𝒎𝒆 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒊𝒆𝒔) 

 

(b) What discrete-time frequency in 𝑣[𝑚] corresponds to the maximum continuous-time frequency 𝑓𝑚𝑎𝑥 

that is present in 𝑥[𝑛]?  6 points. 

 

From our solution in part (a), 𝒇𝒎𝒂𝒙 <
𝟏

𝟐
𝒇𝒔 

And we are given that at 𝒗[𝒎], our new sampling rate is 𝑳𝒇𝒔 

Using the same equation for discrete-time frequency, we find that our solution is: 

𝝎𝐦𝐚𝐱 _𝒂𝒕_𝒗[𝒎] = 𝟐𝝅
𝒇𝒎𝒂𝒙

𝒇𝒔_𝒂𝒕_𝒗[𝒎]
= 𝟐𝝅

(
𝟏
𝟐 𝒇𝒔)

𝑳𝒇𝒔
=

𝝅

𝑳
 

 

 



(c) Any discrete-time frequencies present in 𝑣[𝑚] higher than your answer in part (b) but less than 𝜋 

rad/sample correspond to frequencies introduced by upsampling.  Give the discrete-time passband 

frequency 𝜔𝑝𝑎𝑠𝑠 and stopband frequency 𝜔𝑠𝑡𝑜𝑝 you would use for the lowpass filter design.  6 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine our 𝝎𝐩𝐚𝐬𝐬 and 𝝎𝐬𝐭𝐨𝐩 values, we want to consider a reasonable value of 

10% for the roll-off factor.  Meaning, 𝝎𝐬𝐭𝐨𝐩 = 𝟏. 𝟏𝝎𝐩𝐚𝐬𝐬 

 

Thus, our values result in… 

𝝎𝐩𝐚𝐬𝐬 = 𝟎. 𝟗𝟓
𝝅

𝑳
 

𝝎𝐬𝐭𝐨𝐩 ≌ 𝟏. 𝟎𝟓
𝝅

𝑳
 

 

(d) Give two ways to design a lowpass FIR filter with linear phase to meet the specifications of a 

discrete-time passband frequency 𝜔𝑝𝑎𝑠𝑠 and stopband frequency 𝜔𝑠𝑡𝑜𝑝.  A “way” to design the filter 

could be a formula, algorithm, etc.  6 points. 

Solution I: 

Design an averaging filter with N coefficients 

The first zero should occur at 
𝟐𝝅

𝑵
 

To determine N, we know that 
𝟐𝝅

𝑵
=

𝝅

𝑳
 

Thus, 𝑵 = 𝟐𝑳 

 

Solution II: 

Use filterDesigner from MATLAB 

Use the design methods such as Parks-McClellan, Least-Squares, or Kaiser Window 

 

Solution III: 

Place zeros on a pole-zero plot for a low-pass filter 

  



Problem 1.3 Equalizer Design.  27 points. 

Many applications use a digital-to-analog (D/A) converter and an analog-to-digital (A/D) converter. 

• An audio system would use a D/A converter for playback over earbuds or speakers and an A/D 

converter in a microphone for recording and mixing. 

• A digital communication system would use a D/A converter in the transmitter and an A/D 

converter in the receiver. 

You’ll design a linear time-invariant (LTI) bound-input bounded-output (BIBO) stable discrete-time 

equalizer to compensate the distortion in the nonlinear system (on the left) using an LTI model of the 

nonlinear system (on right): 

 

 

 

 

 

(a) Give a formula for a test signal to use for x[m] that would be of finite duration.  The test signal 

should have all discrete-time frequencies in it.  The test signal would be used to estimate the 

impulse response h[m] for the LTI model of the cascade of the D/A and A/D converters. 12 points. 

Solution I:  Use a chirp signal:   𝒙(𝒕) = 𝐜𝐨𝐬 (𝟐𝝅𝒇𝟎𝒕 + 𝝅𝝁𝒕𝟐) 

 

                   𝜽(𝒕) 

The chirp will sweep continuous-time frequencies: 

𝟎 𝑯𝒛 → 𝒇𝒎𝒂𝒙 =
𝟏

𝟐
𝒇𝒔 𝐇𝐳 

where the instantaneous frequency is: 

𝒅𝜽(𝒕)

𝒅𝒕
= 𝟐𝝅𝒇𝟎 + 𝟐𝝅𝝁𝒕 = 𝟐𝝅(𝒇𝟎 + 𝝁𝒕) 𝒓𝒂𝒅/𝒔 

 

                     𝒇𝒊(𝒕) = 𝒇𝟎 + 𝝁𝒕,  𝒇𝟎 = 𝟎 𝐇𝐳 

          𝒇𝒎𝒂𝒙 =
𝟏

𝟐
𝒇𝒔 = 𝝁𝒕𝒎𝒂𝒙 

Solution II: 

Use a PN (Pseudo-Random Noise) Sequence because it covers all frequencies 

• 𝒓𝒕𝒉-order connection polynomial 

• 𝟐𝒓 − 𝟏 bits for fundamental period 

We subtract 1 because the state of all zeros is a lockout state that does not change 

 

Solution III: 

Use an impulse response: 𝒙[𝒎] = 𝜹[𝒎] 
In theory this is a good/feasible idea. 

In practice, it does not capturing variability over time in the unknown system. 

Note: Impulsive events used in seismic modelling of acoustic layers (eg., earth layers) 

This chirp signal would sweep 

discrete-time frequencies from 

𝟎 𝒓𝒂𝒅/𝒔𝒂𝒎𝒑𝒍𝒆 → 𝝅 𝒓𝒂𝒅/𝒔𝒂𝒎𝒑𝒍𝒆 
 



 

Solution IV:  Use a special case of a short PN sequence 

 
 

(b) Given the poles and zeros of 𝐻(𝑧) below, give the values for the poles and zeros of 𝐺(𝑧) and draw 

them on the pole-zero diagram on the right for an LTI equalizer 𝐺(𝑧) that would make the cascade 

of the LTI system model 𝐻(𝑧) and the LTI equalizer 𝐺(𝑧) be allpass.  15 points. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑝0 = 0.9 

𝑝1 = 0.9 𝑒𝑗 
𝜋
4  

𝑝2 = 0.9 𝑒−𝑗 
𝜋
4  

 

𝑧0 = −1  

𝑧1 = 1.25 𝑒𝑗 
𝜋
2  

𝑧2 = 1.25 𝑒−𝑗 
𝜋
2  

Solution I 

 

Solution II 

 



Problem 1.4.  Potpourri.  24 points. 

(a) An integrator is a common building block in systems.  The discrete-time version of the integrator is 

the running summation, which is defined for input 𝑥[𝑛] and output 𝑦[𝑛] for 𝑛 ≥ 0 as follows: 

𝑦[𝑛] = ∑ 𝑥[𝑚]

𝑛

𝑚=0

 

The summation requires unbounded memory as 𝑛 → ∞.  A more efficient implementation is 

𝑦[𝑛] = 𝑦[𝑛 − 1] + 𝑥[𝑛]  for  𝑛 ≥ 0  

I. Give the initial condition(s) for the more efficient implementation to be linear and time-

invariant (LTI). 4 points. 

 

Rather than using the summation equation,  

𝒚[𝒏] = ∑ 𝒙[𝒎]

𝒏

𝒎=𝟎

 

It is simpler to solve for the initial conditions using the equivalent recursive 

difference equation instead, 𝒚[𝒏] = 𝒚[𝒏 − 𝟏] + 𝒙[𝒏]  𝐟𝐨𝐫  𝒏 ≥ 𝟎  

Consider 𝒏 = 𝟎:  𝒚[𝟎] = 𝒚[−𝟏] + 𝒙[𝟎] 

    Initial Condition 

In order for LTI to hold, our initial conditions must equal zero: 

𝒚[−𝟏] = 𝟎 

 

II. Give a formula for and plot the impulse response ℎ[𝑛] of an LTI running summation.  4 points 

 

This time, let’s use the summation form, 

𝒚[𝒏] = ∑ 𝒙[𝒎]

𝒏

𝒎=𝟎

 

Let 𝒙[𝒎] = 𝜹[𝒎] and then 𝒉[𝒏] = 𝒚[𝒏]: 

                 𝒉[𝒏] = ∑ 𝜹[𝒎]

𝒏

𝒎=𝟎

= {
𝟏, 𝒊𝒇 𝒏 ≥ 𝟎
𝟎,     𝒆𝒍𝒔𝒆   

 

 

III. The running summation only gives an unbounded output for a bounded input when the input 

has a non-zero constant component. What filter would you apply before the running summation 

to prevent the running summation being bounded-input bounded-output unstable?   4 points 

 

Use a DC notch filter to remove the non-zero constant at 0 radians/sample 

  



(b) There are several algorithms [1] to generate a  cosine signal  

x[𝑛] = cos(𝜔0 𝑛) and a sine signal 𝑦[𝑛] = sin(𝜔0 𝑛) at the 

same time using rotation.  For each signal, the argument is 

0, 𝜔0, 2𝜔0, …, for 𝑛 = 0, 1, 2, … 
 

Using the visual representation on the right, the next cosine value 

𝑋𝑛+1 and next sine value 𝑌𝑛+1 are computed from the current cosine 

value 𝑋𝑛 and current sine value 𝑌𝑛 using a rotation operation: 
 

[
𝑋𝑛+1

𝑌𝑛+1
] = [

cos(𝜃) −sin(𝜃)

sin(𝜃) cos(𝜃)
] [

𝑋𝑛

𝑌𝑛
] 

 

Using rotation keeps the values of the cosine and sine for the same angle on the unit circle. 

With 𝜃 = 𝜔0, we use the rotation approach starting at 𝑛 = 0 and pre-compute cos(𝜃) and sin(𝜃). 

Note: This is called the Coordinate Rotation Digital Computer (CORDIC) Algorithm.  “The 

algorithm was used in the navigational system of the Apollo program's Lunar Roving 

Vehicle to compute bearing and range, or distance from the Lunar module.” 

I. What are the values of 𝑋0 and 𝑌0?  4 points. 

Consider at 𝒏 = 𝟎: 𝐜𝐨𝐬(𝝎𝟎𝒏) = 𝐜𝐨𝐬(𝟎) = 𝟏 

   𝐒𝐢𝐧(𝝎𝟎𝒏) = 𝐬𝐢𝐧(𝟎) = 𝟎 

Thus, 𝑿𝟎 = 𝟏, 𝒀𝟎 = 𝟎 

II. How many multiplications per output sample are needed to compute the cosine and sine 

signals?  4 points. 

For the matrix operation, we have a 2x2 matrix multiplied by a 2x1 vector. 

To compute 𝑿𝒏+𝟏 (cosine component), we need 2 multiplications 

 𝑿𝒏+𝟏 = 𝐜𝐨𝐬(𝜽) 𝑿𝒏 + (− 𝐬𝐢𝐧(𝜽))𝒀𝒏 

To compute 𝒀𝒏+𝟏 (sine component), we need 2 multplications 

 𝒀𝒏+𝟏 = 𝐬𝐢𝐧(𝜽) 𝑿𝒏 + 𝐜𝐨𝐬 (𝜽)𝒀𝒏 

So, we require a total of 4 multiplications (and 4 additions) per output sample. 

 

III. Compare your answer in part II to using second-order difference equations to compute cosine 

and sine signals separately.  4 points. 

 

Consider the difference equation for the cosine signal: 

𝒚[𝒏] = (𝟐𝐜𝐨𝐬(𝝎𝟎)) 𝒚[𝒏 − 𝟏] − 𝒚[𝒏 − 𝟐] + 𝒙[𝒏] − (𝐜𝐨𝐬(𝝎𝟎)) 𝒙[𝒏 − 𝟏] 

Consider the difference equation for the sine signal: 

𝒚[𝒏] = (𝟐𝐜𝐨𝐬(𝝎𝟎)) 𝒚[𝒏 − 𝟏] − 𝒚[𝒏 − 𝟐] + (𝐬𝐢𝐧(𝝎𝟎)) 𝒙[𝒏 − 𝟏] 

We see that with this format, both cosine and sine require around 2 

multiplications and 4 additions, for a total of 4 multiplications and 8 additions. 

 

In comparison, the CORDIC algorithm only requires 4 multiplications and 4 

additions, and so gives us computational savings. 

Matrix Rotation [1] 

https://en.wikipedia.org/wiki/CORDIC
https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Lunar_Roving_Vehicle
https://en.wikipedia.org/wiki/Lunar_Roving_Vehicle
https://en.wikipedia.org/wiki/Bearing_(navigation)
https://en.wikipedia.org/wiki/Lunar_module

