
 
The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 
Midterm #2 Solution Set 3.0 

 
Prof. Brian L. Evans 

 
Date: December 9, 2019      Course: EE 445S 

 
 
 
 

Name:              
Last,      First   

 
 
 
 
 

• The exam is scheduled to last 75 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets.  You may not share materials with other students.  
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network. 

Disable all wireless access from your standalone computer system.  
• Please turn off all smart phones and other personal communication devices. 
• Please remove headphones. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers unless instructed otherwise.  When justifying your answers, 

you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and 
Morrow (WWM) lab book, course reader, and course handouts.  Please be sure to 
reference the page/slide number and quote the particular content in your justification. 

 
 

Problem Point Value Your score Topic 
1 24  Bandpass PAM Receiver Tradeoffs 
2 30  QAM Communication Performance 
3 28  Channel Equalization 
4 18  Total Harmonic Distortion 

Total 100   
  



Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.  
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 
𝑎[𝑛] transmitted symbol amplitude 𝑎[𝑛] received symbol amplitude 
2d constellation spacing   fs sampling rate  fsym symbol rate 
g[m] raised cosine pulse with rolloff α J  bits/symbol   L samples/symbol 
Μ number of levels, i.e. M = 2J  Ng symbol periods in g[m] ωc carrier freq. in rad/sample 

The only impairment is additive thermal noise w(t) modeled as zero-mean Gaussian with variance σ2. 

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 
(a) Give formulas for communication signal quality measures below in terms of system parameters: 

i. Bit rate.   3 points.   J fsym.  Units: [bits/symbol] x [symbols/s] = [bits/s] 
ii. Probability of symbol error.  3 points 
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𝑴
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 𝑸 𝒅
𝝈

𝑳 𝑻𝒔   

(b) Draw the spectrum for r(t).  What is the transmission bandwidth in Hz?   6 points. 

 

𝐓𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡 = 𝒇𝒔𝒚𝒎 𝟏+ 𝜶 ; 𝒇𝟏 = 𝒇𝒄 −
𝟏
𝟐
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𝟏
𝟐
𝒇𝒔𝒚𝒎 𝟏+ 𝜶  

(c) For the lowpass filter (LPF), 
i. What three roles does it play?  3 points.  Demodulating filter, anti-aliasing filter for 

downsampling operation, and matched filter to maximize SNR at downsampler output 
ii. If its impulse response is equal to g[m], give a formula for its bandwidth.  3 points 

𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝒉 = 𝟐𝝅
𝟏
𝟐𝒇𝒔𝒚𝒎 𝟏!𝜶

𝒇𝒔
= 𝝅

𝑳
𝟏+ 𝜶  by using 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 

(d) For the cascade of the lowpass filter (LPF) and downsampling by L, 
i. How many multiplications per second are required?  3 points 

L2 Ng fsym , because the FIR filter has Ng L coefficients and runs at rate L fsym. 
ii. What would the savings be if the cascade were realized in polyphase form?  Why?  3 points. 

The downsampler only keeps 1 sample of every block of L samples produced by the 
FIR filter.  A polyphase form would only compute the 1 sample by using a bank of L 
filters, each with Ng coefficients, running at the symbol rate.  Savings by a factor of L.  

Lectures 13 & 14 
JSK Ch. 8 & 11 
Lab #5 & WWM Ch. 17 
HW 5.2, 5.3, 6.1, 6.2 
Midterm 2.1 F18 & Sp19 
Handout P 

Lecture Slide 26-10 (Midterm #2 Review) 



Problem 2.2  QAM Communication Performance. 30 points.  
Consider the two 12-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 10d 2 50d 2 
(b) Average transmit power 22

3 𝑑! ≈ 7.33𝑑! 
𝟐𝟒𝟖
𝟏𝟐 𝒅𝟐 ≈ 𝟐𝟎.𝟔𝟕𝒅𝟐 

(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 
constellation that will minimize the probability of symbol error using such decision regions. 
(d) Number of type I regions 4 1 
(e) Number of type II regions 4 7 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

3 𝑄
𝑑
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(h) Express d/σ as a function 
of the Signal-to-Noise Ratio 
(SNR) in linear units 
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22
3
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(i) In a 12-QAM receiver for the right constellation, an estimated symbol amplitude is –5d – jd. What 
is the decoded transmitted constellation point using 

• Your constellation regions given above. 3 points.  d – j d 
• Smallest Euclidean distance. 3 points.  -5d + j d 

Lecture 15 
Lecture 16 
JSK Ch. 16 
Lab #6 
HW 6.3 
Midterm 2.2 
Problems in 
Sp18, F18 
and Sp19 
Handout P 

Note:  The constellation on the right is impractical.  It consumes too much power.  For the lowest 
symbol error probability in mapping a received symbol amplitude to a symbol of bits, find the closest 
constellation point in Euclidean distance.  For rectangular constellations, such as for 16-QAM, using 
rectangular decision regions would give the same minimum symbol error results as Euclidean distance 
but has a fast divide-and-conquer algorithm using J comparisons for M = 2J levels (no multiplications). 
 



Problem 2.3. Channel Equalization.  28 points. 
In the discrete-time system on the right, the equalizer 
operates at the sampling rate. 
The equalizer is a finite impulse response (FIR) filter 
with N real coefficients w0, w1, … wN-1 : 
r[m] = w0  y[m] + w1 y[m-1] + …+ wN-1 y[m - (N-1)] 

Channel model is an FIR filter with impulse response 
h[m] in cascade with additive noise n[m]. 
(a) What two training sequences for x[m] could you use?  Why?  6 points. 

Pseudo-noise sequences and chirp sequences have all discrete-time frequencies present in 
them.  Either can be independently generated by the receiver.  A pseudo-noise sequence can 
be generated using only logical operations and memory. 

(b) For one of the training sequences in part (a), describe how you would estimate the delay parameter 
Δ in the ideal channel model. 3 points. 
The receiver can correlate the received signal y[m] against the anticipated training sequence 
x[m], and we can take the location of the first peak to be Δ  samples. 

(c) For an adaptive FIR equalizer, derive the update equation for the vector of FIR coefficients 𝑤 for 
the objective function J(e[m]) = | e[m] |.  Here, 𝑤 =  𝑤!  𝑤!  ⋯   𝑤!!! .  Please use the fact that 
!
!"

𝑥 = sign 𝑥  except at x = 0 which we will extend to include x = 0.  What value should sign(x) 
take at x = 0 for the adaptive update?  Let 𝑤[𝑚] =  𝑤! 𝑚     𝑤! 𝑚  ⋯   𝑤!!! 𝑚   .  12 points. 

We would like to drive the error e[m] to zero and hence minimize J(e[m]) = | e[m] |. 

𝒘 𝒎+ 𝟏 = 𝒘 𝒎 − 𝝁 𝒅𝑱 𝒆[𝒎]
𝒅𝒘 𝒘!𝒘[𝒎]

= 𝒘 𝒎 − 𝝁 𝐬𝐢𝐠𝐧(𝒆 𝒎]  𝒚 𝒎   

where 𝒚[𝒎] =  𝒚 𝒎    𝒚 𝒎− 𝟏   ⋯   𝒚[𝒎− (𝑵− 𝟏)  ]. 

If error e[m] reaches zero, then we’d stop the update, so we’ll need sign(0) = 0. 
(d) Compare your answer in (c) with an adaptive least mean squares (LMS) equalizer.  For the LMS 

approach, use 𝐽 𝑒 𝑚 =  !
!
𝑒! 𝑚  which leads to the update equation 

𝑤 𝑚 + 1 = 𝑤 𝑚 − 𝜇 𝑒 𝑚  𝑦 𝑚  

where 𝑦 𝑚 =  𝑦 𝑚    𝑦 𝑚 − 1   ⋯   𝑦[𝑚 − (𝑁 − 1)  ].  Would you use (c) or (d)?  4 points. 

The update equation in (c) will scale 𝒚[𝒎] by either +µ , –µ,  or 0.  Large errors are treated 
the same way as non-zero small errors.  In part (d), the offset is proportional to the error 
value.  The update will initially make rapid progress and then slow down as it approaches 
the optimal answer.  Parts (c) and (d) have similar complexity: they would compute either 
µ  sign(e[m]) or µ  e[m] before multiplying that scalar value by the vector 𝒚[𝒎]. 

(e) For your answer in (c), what values of the step size (learning rate) µ would you use?  3 points. 
Use a small positive value for the step size µ , such as 0.01 or 0.001, for convergence of the 
steepest descent algorithm.  A step size of zero will prevent any updates.  A negative step size 
and a large positive step size will cause divergence. 

JSK Sec. 2.12 & 13.1-13.3; HW 5.1, 6.1, 6.2, 7.2; Slides 16-6 to 16-8; In-Lecture Problems 2&3; 
Midterm Problems: 2.2 F12, 2.1 Sp13, 2.1 F13, 2.1 Sp14, 2.3 Sp17, 2.3 Sp17, 2.3 Sp17 

 



Problem 2.4.  Total Harmonic Distortion.  18 points 

Total harmonic distortion is a measure of the power in the harmonics of a fundamental frequency. 
Design a discrete-time, linear time-invariant (LTI), infinite impulse response (IIR) comb filter to 
• Pass harmonics of a 1 kHz tone, i.e. 2 kHz, 3 kHz, etc. 
• Not pass 0 kHz or 1 kHz frequencies. 
Assume a sampling rate of 48 kHz. 
Please give the transfer function of your design and explain your reasoning to get there. 
 
 

We’ll use a cascade of an IIR comb filter, IIR DC notch filter, and IIR filter to notch 1 kHz. 

• IIR comb filter:  𝒚 𝒏 = 𝒙 𝒏 − 𝜶 𝒚[𝒏−𝑲].  Zero initial conditions to ensure LTI properties. 
Transfer function: 𝑯𝒄𝒐𝒎𝒃 𝒛 = 𝟏

𝟏 ! 𝜶 𝒛!𝑲
 which has K poles with radius 𝜶𝑲 and uniformly 

spaced in phase, where 𝜶 < 𝟏 for bounded-input bounded-output (BIBO) stability.   

Magnitude response: Peaks at integer multiples of fs / K between [ -½ fs , ½ fs ). 

• IIR DC notch filter.  𝒚 𝒏 = 𝒙 𝒏 − 𝒙 𝒏− 𝟏 + 𝒓 𝒚[𝒏− 𝟏].  Zero initial conditions for LTI. 
Transfer function: 𝑯𝟎 𝒛 = 𝟏! 𝒛!𝟏

𝟏 ! 𝒓 𝒛!𝟏
 which has a zero at z = 1 and pole at z = r. 

• IIR notch filter to remove f1 = 1 kHz which is a discrete-time frequency of 𝝎𝟏 = 𝟐𝝅 𝒇𝟏
𝒇𝒔

 . 

Second-order IIR filter with zeros on the unit circle at −𝝎𝟏 and 𝝎𝟏 ; poles at same angle. 

Transfer function: 𝑯𝟏 𝒛 = 𝟏 ! 𝒛𝟏 𝒛!𝟏 𝟏 ! 𝒛𝟐 𝒛!𝟏

𝟏 ! 𝒑𝟏 𝒛!𝟏 𝟏 ! 𝒑𝟐 𝒛!𝟏
 with 𝒛𝟏 = 𝒆𝒋𝝎𝟏, 𝒛𝟐 = 𝒆!𝒋𝝎𝟏, 𝒑𝟏 = 𝒓 𝒆𝒋𝝎𝟏, and 

𝒑𝟐 = 𝒓 𝒆!𝒋𝝎𝟏. 
 
Overall transfer function:  𝑯 𝒛 = 𝑯𝒄𝒐𝒎𝒃 𝒛  𝑯𝟎 𝒛  𝑯𝟏 𝒛  
Parameters:  K = 48, α  = 0.9, and r = 0.95. 
 
See the next page for MATLAB code and plots (not required to answer the question). 
 

  

Harmonic Distortion: JSK Sec. 3.5; Slides 8-13 & 8-14 
Comb Filters: Lab #7; WWM Ch. 10; In-Lecture Prob. 4; https://en.wikipedia.org/wiki/Comb_filter 
Notch Filters: Lecture Slide 6-6; HW 3.1; Midterm Problems 1.1 Sp06, 1.3 F19, 2.3 F15 

 



% UT Austin   EE 445S Real-Time DSP Lab 
% Fall 2019        Prof. Brian L. Evans 
  
% Midterm Question 2.4 
% Design an IIR comb filter that 
% (1) passes harmonics on 1 kHz 
% (2) does not pass 0 or 1 kHz 
  
fs = 48000;   % Sampling rate 
N =  48000;   % 1 Hz accuracy in plots 
  
% IIR Comb Filter Design 
% Input-Output relationships in the time 
% domain is y[n] = x[n] - alpha * y[n-delay] 
delay = 48;   % IIR filter order 
alpha = 0.9; 
numerComb = 1; 
denomComb = zeros(1, delay+1); 
denomComb(1) = 1; 
denomComb(delay+1) = -alpha; 
  
% Design DC IIR notch filter to remove 0 kHz 
z0 = 1; 
p0 = 0.95; 
numer0 = [1 -z0]; 
denom0 = [1 -p0]; 
  
% Design IIR notch filter to remove 1 kHz 
f1 = 1000; 
z1 = exp(-j*2*pi*f1/fs); 
z2 = conj(z1); 
p1 = 0.95*z1; 
p2 = conj(p1); 
numer1 = [1 -(z1+z2) z1*z2]; 
denom1 = [1 -(p1+p2) p1*p2]; 
  
% Combine the three filters into 1 section 
% IIR Comb + DC Notch + 1 kHz notch 
% Convolution implements polynomial multiplication 
numer = conv(numerComb, numer0); 
numer = conv(numer, numer1); 
denom = conv(denomComb, denom0); 
denom = conv(denom, denom1); 
  
% Frequency response 
figure;  
freqz(numer, denom, N, fs); 
ylim([-20 30]); 
  
% Pole-zero diagram. 
figure; 
zplane(numer, denom); 
 
 


