The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

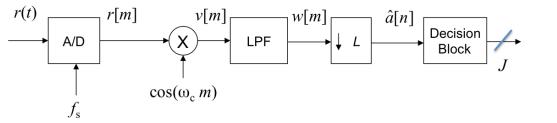
Prof. Brian L. Evans

Date: December 9, 2019

Course: EE 445S

Name:

Last,


First

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. **Disable all wireless access from your standalone computer system**.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- **Fully justify your answers unless instructed otherwise**. When justifying your answers, you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

Problem	Point Value	Your score	Торіс
1	24		Bandpass PAM Receiver Tradeoffs
2	30		QAM Communication Performance
3	28		Channel Equalization
4	18		Total Harmonic Distortion
Total	100		

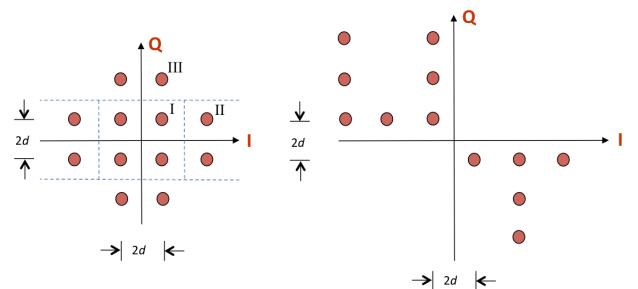
Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.

A bandpass pulse amplitude modulation (PAM) receiver is described as

where *m* is the sampling index and *n* is the symbol index, and has system parameters

a[n] transmitted symbol amplitude $\hat{a}[n]$ received symbol amplitude2d constellation spacing f_s sampling rate f_{sym} symbol rateg[m] raised cosine pulse with rolloff α J bits/symbolL samples/symbolM number of levels, i.e. $M = 2^J$ N_g symbol periods in g[m] ω_c carrier freq. in rad/sample

The only impairment is additive thermal noise w(t) modeled as zero-mean Gaussian with variance σ^2 . Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal.


- (a) Give formulas for communication signal quality measures below in terms of system parameters:
 - i. Bit rate. 3 points
 - ii. Probability of symbol error. 3 points
- (b) Draw the spectrum for r(t). What is the transmission bandwidth in Hz? 6 points.
- (c) For the lowpass filter (LPF),
 - i. What three roles does it play? 3 points
 - ii. If its impulse response is equal to g[m], give a formula for its bandwidth. 3 points

(d) For the cascade of the lowpass filter (LPF) and downsampling by L,

- i. How many multiplications per second are required? 3 points
- ii. What would the savings be if the cascade were realized in polyphase form? Why? 3 points.

Problem 2.2 *QAM Communication Performance. 30 points.*

Consider the two 12-QAM constellations below. Constellation spacing is 2d.

Energy in the pulse shape is 1. Symbol time T_{sym} is 1s. The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.

Each part below is worth 3 points. Please fully justify your answers.

	Left Constellation	Right Constellation
(a) Peak transmit power	$10d^{2}$	
(b) Average transmit power	$\frac{22}{3}d^2 \approx 7.33d^2$	
(c) Draw the type I, II and/or III	decision regions for the right con	stellation on top of the right
constellation that will minimize	the probability of symbol error u	ising such decision regions.
(d) Number of type I regions	4	
(e) Number of type II regions	4	
(f) Number of type III regions	4	
(g) Probability of symbol error for additive Gaussian noise with zero mean & variance σ^2	$3 Q \left(\frac{d}{\sigma}\right) - Q^2 \left(\frac{d}{\sigma}\right)$	
(h) Express d/σ as a function of the Signal-to-Noise Ratio (SNR) in linear units	$SNR = \frac{22}{3} \left(\frac{d^2}{\sigma^2} \right)$	
	$\frac{d}{\sigma} = \sqrt{\frac{3}{22}}$ SNR $\approx 0.369\sqrt{\text{SNR}}$	

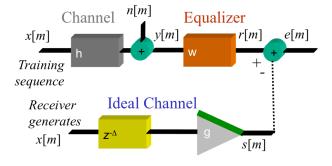
(i) In a 12-QAM receiver for the right constellation, an estimated symbol amplitude is -5d - jd. What is the decoded transmitted constellation point using

- Your constellation regions given above. *3 points*
- Smallest Euclidean distance. 3 points

Problem 2.3. Channel Equalization. 28 points.

In the discrete-time system on the right, the equalizer operates at the sampling rate.

The equalizer is a finite impulse response (FIR) filter with N real coefficients w_0, w_1, \dots, w_{N-1} :


$$r[m] = w_0 y[m] + w_1 y[m-1] + \ldots + w_{N-1} y[m - (N-1)]$$

Channel model is an FIR filter with impulse response h[m] in cascade with additive noise n[m].

- (a) What two training sequences for x[m] could you use? Why? 6 points.
- (b) For one of the training sequences in part (a), describe how you would estimate the delay parameter Δ in the ideal channel model. *3 points*.
- (c) For an adaptive FIR equalizer, **derive the update equation** for the vector of FIR coefficients \vec{w} for the objective function J(e[m]) = |e[m]|. Here, $\vec{w} = [w_0 \ w_1 \ \cdots \ w_{N-1}]$. Please use the fact that $\frac{d}{dx}|x| = \operatorname{sign}(x)$ except at x = 0 which we will extend to include x = 0. What value should $\operatorname{sign}(x)$ take at x = 0 for the adaptive update? Let $\vec{w}[m] = [w_0[m] \ w_1[m] \ \cdots \ w_{N-1}[m]]$. 12 points.

(d) Compare your answer in (c) with an adaptive least mean squares (LMS) equalizer. For the LMS approach, use $J(e[m]) = \frac{1}{2}e^2[m]$ which leads to the update equation $\vec{w}[m+1] = \vec{w}[m] - \mu e[m] \vec{y}[m]$ where $\vec{y}[m] = [y[m] \ y[m-1] \ \cdots \ y[m-(N-1)]]$. Would you use (c) or (d)? *4 points*.

(e) For your answer in (c), what values of the step size (learning rate) μ would you use? 3 points.

Problem 2.4. Total Harmonic Distortion. 18 points

Total harmonic distortion is a measure of the power in the harmonics of a fundamental frequency. Design a discrete-time, linear time-invariant (LTI), infinite impulse response (IIR) comb filter to

- Pass harmonics of a 1 kHz tone, i.e. 2 kHz, 3 kHz, etc.
- Not pass 0 kHz or 1 kHz frequencies.

Assume a sampling rate of 48 kHz.

Please give the transfer function of your design and explain your reasoning to get there.