# The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

#### Prof. Brian L. Evans

Date: May 4, 2012 Course: EE 445S

Name: Set, Solution
Last, First

- The exam is scheduled to last 50 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any stand-alone computer system, i.e. one that is not connected to a network. Disable all wireless access from your stand-alone computer system.
- Please turn off all cell phones, pagers, and personal digital assistants (PDAs).
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares & Klein textbook, the Welch, Wright and Morrow lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content you are using in your justification.

| Problem | Point Value | Your score | Topic                               |
|---------|-------------|------------|-------------------------------------|
| 1       | 27          |            | Quadrature Amplitude Modulation     |
| 2       | 27          |            | Channel Estimation                  |
| 3       | 27          |            | Pulse Amplitude Modulation Receiver |
| 4       | 19          |            | Noise Shaping                       |
| Total   | 100         | ·          |                                     |

## Problem 2.1 Quadrature Amplitude Modulation (QAM). 27 points.

A 4-level QAM constellation is shown on the right.

Assume that the symbol time is 1s.

Assume that the energy in the pulse shape is 1.

 $T_{sym} = 1$ 







(c) Draw decision regions at the receiver on the above constellation. 6 points. I axis and Q axis.

(d) Based on your decision regions in (c), give the fastest algorithm possible to decode/quantize the estimated symbol amplitude in the receiver into a symbol of bits. 6 points.

Symbol of bits has a bits Sos. Symbol amplitude (estimated): an + jon

If (â, >0) 5, =0 else 5, =1

Tf (b, >0) 5 = 1 else 50=0

Two comparisons using divide-and-conquer strategy.

(e) Based on the decision regions in (c), give a formula for the probability of symbol error. 6 points.

Based on QAM transmitter lecture slides 15-13 and 15-14,

4-DAM decision regions are type-3 DAM regions (in corper

regions that are not edges).

P3(c) = (1-Q(d))2

 $P(e) = 1 - P_3(e) = 1 - (1 - Q(\frac{d}{e}))^2 = 2Q(\frac{d}{e}) - Q(\frac{d}{e})$ 

**Problem 2.2.** Channel Estimation. 27 points.

A sparse communication channel is modeled as a linear time-invariant (LTI) finite impulse response (FIR) comb filter b[m] plus additive white Gaussian noise w[m].



white Gaussian hoise 
$$w[m]$$
.

$$b[m] = 1 + \delta[m - \Delta] \quad \text{where } \Delta > 1 \quad b[m] = \delta[m] + \delta[m - \Delta] \quad w[m]$$

w[m] has zero mean and variance  $\sigma^{2}$ 

(a) Give an equation in the discrete-time domain for the received signal r[m] for the transmitted signal s[m] and the channel model. 6 points. b[m]



(b) Give a training signal s[m] that would enable accurate estimation of  $\Delta$  for  $\Delta > 1$ . How would you determine the length of the training signal? 6 points.

Use a long maximal-length pseudo-noise sequence for the training signal s [m]. PN sequences are robust to frequency selective channels and to additive noise.

The PN sequence would have values of +1 or -1. Longer (c) Using your answer in (b), give an algorithm in the receiver to estimate  $\Delta$ . 6 points sequences will In the receiver, we would correlate the received signal r [m] against the training sequence. Two peaks should result at m=0 and at n= A.

better results in (c). PN length can be less than, equal to,

(d) Give a formula for the impulse response or transfer function of a channel equalizer in the receiver to compensate for the frequency selectivity of the channel. You may ignore the noise. 9 points.

Equalizer filter G(2) We can't use G(2) = B(2) because

G(2) would have & poles on unit circle.

Caseade of B(2) and G(2) gives LTF system with

### Problem 2.3. Pulse Amplitude Modulation (PAM) Receiver. 27 points.

For a discrete-time baseband PAM receiver when the channel is modeled as additive white Gaussian noise, the first two blocks are:

r[m] is the discrete-time received signal.

g[m] is the pulse shape used in the transmitter.

 $N_{\varepsilon}$  is the number of symbol periods in the pulse shape.

 $f_{sym}$  is the symbol rate.

Note that v[m] = h[m] \* r[m] and v[n] = v[L n]

heansal[m] = kg\*[LNg-m] =

(a) Give a formula for the causal impulse response h[m] that maximizes a measure of signal-to-noise ratio at y[n]. 6 points. Matched filter h[m] = kg[1-m] where k ER. Delay to make causal.

(b) How many multiplication-accumulation operations per second are needed for the two blocks

above? 6 points.

For an FIR filter of LNg coefficients, LNg multiplication-accumulation (MAC) aperations are needed for each output sample. MACS/5 (LNg) (Lfsym)

The above cascade can be efficiently implemented as a polyphase filter bank as follows:



(c) Give a formula of  $h_0[n]$  in terms of h[n]. Hint: Compare  $y[N_g]$  for the direct form with  $y[N_g]$  of the polyphase filter bank. 6 points.

From midterm #2 review slide 10:

ho[n] = h[Ln] for n=0,1,000, Ng-4[1]=V[L]=h[0]=[L]+h[1]=[L-1]+-..+h[2-1]=[1]+h[L]=[0]

(d) How many multiplication-accumulation operations per second are needed to implement the above polyphase filter bank? 9 points.

L filters with Ng coefficients each. Executes at symbol rate. MACS/s: LNg fsym

Computational saving's over direct implementation by a factor of L.

#### Problem 2.4. Noise Shaping. 19 points.

Here is a block diagram of a noise-shaping feedback coder used in data conversion.



h[m] is the impulse response of a linear time-invariant (LTI) finite impulse response (FIR) filter.

This problem asks you to analyze the noise shaping.

(a) Replace the quantizer with an additive noise source w[m], i.e. b[m] = v[m] + w[m], and derive the transfer function in the frequency domain from the noise source w[m] to the output b[m]. Assume that the input x[m] is zero. 10 points. Set x[m] = 0.

$$b[m] = v[m] + w[m]$$

$$v[m] = *[m] + h[m] * e[m] + V(\omega) = -H(\omega) W(\omega)$$

$$e[m] = w[m]$$

$$\beta(\omega) = -H(\omega) W(\omega) + W(\omega)$$

$$\beta(\omega) = -H(\omega) W(\omega) + W(\omega)$$

$$W(\omega) = -H(\omega) W(\omega)$$

(b) If the frequency selectivity of h[m] were lowpass, what is the frequency selectivity of the noise transfer function? Sketch example frequency responses for both to help justify your answers. 9 points.