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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets.  You may not share materials with other students.  
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network. 

Disable all wireless access from your standalone computer system.  
• Please turn off all smart phones and other personal communication devices. 
• Please remove headphones. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers unless instructed otherwise.  When justifying your answers, 

you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and 
Morrow (WWM) lab book, course reader, and course handouts.  Please be sure to 
reference the page/slide number and quote the particular content in your justification. 

 
 

Problem Point Value Your score Topic 
1 21  Steepest Descent Algorithm 
2 27  QAM Communication Performance 
3 28  Estimating SNR at a Receiver 
4 24  Acoustics of a Concert Hall 

Total 100   
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Problem 2.1. Steepest Descent Algorithm. 21 points. 
The steepest descent algorithm seeks to find a minimum 
value of an objective function by descending into a valley of 
an objective function J(x), as shown on the right. 

The optimum value occurs when the first derivative of the 
objective function is zero.  When the first derivative is 
zero, the steepest descent algorithm will stop updating. 

(a) We seek to minimize J(x) = ½ (x – x0)2 where x0 is a constant.  Write the update equation for 
x[k+1] in terms of x[k]. 6 points.  

 
 

(b) The update equation in part (a) can be interpreted as a first-order linear time invariant (LTI) system 
with output x[k+1] and previous output x[k] for k ≥ 0.  

 
i. Give a formula for the input signal for the linear time-invariant system?  3 points. 

 

 
 

ii. What is the initial guess of x, i.e. x[0]?  3 points. 
 

 
 

iii. What is the pole location?  3 points. 
 

 
 

iv. Give the range of step size values that make the LTI system bounded-input bounded-
output stable.  3 points. 
 

 
 

v. What values of the step size lead to the first-order LTI system being a lowpass filter?  
3 points. 
 
The angle of a pole near the unit circle indicates the center of the passband. 
A real positive pole near the unit circle indicates a lowpass filter. 
With the pole at 1 – µ , we would like µ  to be small and positive (0 < µ  < 0.25). 

x[k +1]= x[k]−µ ∂J(x)
∂x x=x[k ]

x[k +1]= x[k]−µ  (x[k]− x0 )

x[k +1]= (1−µ) x[k] +  µx0

µ  x0  u[k]

x[0]= 0 to satisfy linear and time-invariant properties

1−µ

|1−µ |<1  ⇒  −1< 1−µ <1  ⇒   -2 < -µ < 0  ⇒   0 < µ < 2

116 Chapter 6. Sampling with Automatic Gain Control

direction. Similarly, hill climbing begins with an initial guess of the location
of the maximum, evaluates which direction climbs the most rapidly, and then
makes a new estimate along the uphill direction. With luck, the new estimates are
better than the old. The process repeats, hopefully getting closer to the optimal
location at each step. The key ingredient in this procedure is to recognize that
the uphill direction is defined by the gradient evaluated at the current location,
while the downhill direction is the negative of this gradient.

To apply steepest descent to the minimization of the polynomial J(x) in (6.4),
suppose that a current estimate of x is available at time k, which is denoted x[k].
A new estimate of x at time k + 1 can be made using

x[k + 1] = x[k] − µ
dJ(x)

dx

∣
∣
∣
∣
x=x[k]

, (6.5)

where µ is a small positive number called the stepsize, and where the gradi-
ent (derivative) of J(x) is evaluated at the current point x[k]. This is then
repeated again and again as k increments. This procedure is shown in Fig-
ure 6.15. When the current estimate x[k] is to the right of the minimum,
the negative of the gradient points left. When the current estimate is to the
left of the minimum, the negative gradient points to the right. In either case,
as long as the stepsize is suitably small, the new estimate x[k + 1] is closer
to the minimum than the old estimate x[k]; that is, J(x[k + 1]) is less than
J(x[k]).

J(x)

Minimum

Derivative is 
slope of line
tangent to 

J(x) at x

Gradient direction
has same sign as

the derivative

xn xp

Arrows point in minus gradient
 direction-towards the minimum

Figure 6.15 Steepest descent
finds the minimum of a function
by always pointing in the
direction that leads downhill.

To make this explicit, the iteration defined by (6.5) is

x[k + 1] = x[k] − µ(2x[k] − 4),

or, rearranging,

x[k + 1] = (1 − 2µ)x[k] + 4µ. (6.6)

In principle, if (6.6) is iterated over and over, the sequence x[k] should approach
the minimum value x = 2. Does this actually happen?

JSK, Figure 6.15 
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Problem 2.2  QAM Communication Performance. 27 points.  

Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 34d 2 26d 2 
(b) Average transmit power 18d 2 14d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 0 4 
(e) Number of type II regions 12 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 
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(h) Gray coding possible? No No 

For parts (a) and (b), due to symmetry in the constellation on the right, we can look at upper 
right quadrant for power calculations:  d+jd, 3d+jd, 3d+j3d, 5d+jd.  Power is proportional to I2 + 
Q2, i.e. 2d2, 10d2, 18d2, and 26d2, respectively.  Peak power is 26d2.  Average power is 14d2. 
For part (g), the constellation on the right has the same number of type I, II and III constellation 
regions as a standard 16-QAM constellation (i.e. 4-PAM in in-phase and 4-PAM in quadrature 
directions).  We can reuse symbol error probability from the standard 16-QAM constellation. 

(i) Give a fast algorithm to decode a received symbol amplitude into a symbol of bits using the left 
constellation above.  Using divide & conquer, we need J comparisons for a constellation of J bits. 
Bit #1: Q > 0 
Bit #2: I > 0.  Now we know which of the four quadrants we’re in. 
Upper right quadrant: 
   Bit #3 is set to I > 4d. 
   Bit #4 is set to I > 2d if Bit #3 set and set to Q < 2d otherwise. 
 

Homework 6.3 
Fall 2015 Midterm 2.2 

 



Problem 2.3. Estimating SNR at a Receiver.  28 points. 
Signal-to-noise ratio (SNR) is application-
independent measure of signal quality. 
Consider a signal x[m] passing through an 
unknown system that is received as r[m]. 
We model the unknown system as a linear 
time-invariant (LTI) finite impulse response 
(FIR) filter plus an additive Gaussian noise 
signal w[m] with zero mean and variance σ2,  
as shown on the right. 

Impulse response of the LTI FIR system is h[m].   
(a) An application-independent way to estimate the SNR at r[m] is to send signal x1[m] of M samples 

to receive r1[m], wait for a very short period of time, and send x1[m] again to receive r2[m]: 
 

r1[m] = h[m] * x1[m] + w1[m]    for  m = 0, 1, …, M-1 
r2[m] = h[m] * x1[m] + w2[m]    for  m = 0, 1, …, M-1 
 

i. Derive an algorithm to estimate σ2 by subtracting r2[m] and r1[m].  9 points. 
 r2[m] – r1[m] =  (h[m]*x1[m] + w2[m]) – (h[m]*x1[m] + w1[m]) =  w2[m] – w1[m] = v[m] 

 
ii. How long should we wait between the two transmissions of x1[m]?   5 points. 

Group delay of FIR filter h[m] to prevent overlap in the two transmissions at receiver. 
 

(b) In a pulse amplitude modulation (PAM) system, the received signal r[m] goes through a matched 
filter and downsampler.  The downsampler output is the received symbol amplitude.  
 
i. During training, transmitted and received symbol amplitudes are known.  Use this fact to 

estimate the SNR for each training symbol at the downsampler output.  9 points. 
Let 𝒂𝒏be the transmitted symbol amplitude and 𝒂𝒏be the received symbol amplitude 
for symbol index n.  (Index m is the sample index.)  Noise power is 𝒂𝒏 − 𝒂𝒏 𝟐. 

SNR =
Signal  Power
Noise  Power =

𝑎!!

𝑎! − 𝑎! ! 

ii. Based on the noise power at the downsampler output, give a formula for σ2. 5 points 
A continuous-time matched filter changes the additive noise power σ2 by 1/Tsym. 
In discrete-time, a matched filter changes the additive noise power by 1/L where L is the 
number of samples per symbol period.  So, 𝝈𝟐 = 𝑳 𝒂𝒏 − 𝒂𝒏 𝟐.  

σ v
2 = E v2[m]{ }−E 2 v[m]{ }

E v2[m]{ }= E w2[m]−w1[m]( )2{ }= E w2
2[m]{ }− 2E w1[m]w2[m]{ }+E w1

2[m]{ }= 2σ 2

E v[m]{ }=
1
M

v[m]= 1
M

w2[m]−w1[m]( ) = 1
M

w2[m]−
m=0

M−1

∑
m=0

M−1

∑
m=0

M−1

∑ 1
M

w1[m]= 0
m=0

M−1

∑

Note: E w1[m]w2[m]{ }=
1
M

w1[m]w2[m]= 0 
m=0

M−1

∑ because w1[m] and w2[m] have zero mean.
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Problem 2.4. Acoustics of a Concert Hall.  24 points 
Some audio playback systems have the option to emulate a specific 
concert hall. 
One implementation is to convolve an audio track with the impulse 
response h[m] of the concert hall.  
To estimate the impulse response of the concert hall, we place a 
speaker on stage and a microphone at one of the seats. 

 
(a) Give two examples of the training signal x[m] you could use.  

Why?  6 points. 
 
Pseudo-noise sequence (maximal length preferred) 
Chirp signal that sweeps over all audio frequencies 

Audio track 
 

(b) Set up steepest descent algorithm to update h[m] so that r[m] is as close to h[m] * x[m] as possible. 
i. Give an objective function to be minimized.  6 points. 

 
y[m] = r[m] – h[m] * x[m] 
 
J(y[m]) =  (½) y2[m] 
 

ii. Give the update equation for the vector ℎ of FIR coefficients.  6 points. 
 

 
 

iii. What values would you recommend for the step size µ?  6 points. 
 
We would like small positive µ  values, e.g. µ  = 0.001. 

 

h[m]* x[m]= h[0] x[m]+ h[1] x[m−1]+ h[2] x[m− 2]+...+ h[M −1] x[m− (M −1)]

Let h
→

[m]= [ h[0]   h[1]   h[2]   ....   h[M -1] ] 

and x
→

[m]= [ x[m]   x[m−1]   x[m− 2]   ....  x[m− (M −1)]  ]  

h
→

[m+1]= h
→

[m]−µ ∂J(y[m])

∂h
→

[m]
= h

→

[m]−µ  y[m] ∂y[m]

∂h
→

[m]
= h

→

[m]+µ  y[m] x
→

[m]   

   

Orchestra Seating, Bass Concert Hall, 
The University of Texas at Austin 

Homework 4.2, 4.3 & 5.2 
 

Homework 7.2 
Fall 2014 Midterm 2.3  

 

Homework 6.1, 6.2, 7.2 & 7.3 
 

Homework 7.2 
Fall 2014 Midterm 2.3  

 


