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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets.  You may not share materials with other students.  
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network. 

Disable all wireless access from your standalone computer system.  
• Please turn off all smart phones and other personal communication devices. 
• Please remove headphones. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers unless instructed otherwise.  When justifying your answers, 

you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and 
Morrow (WWM) lab book, course reader, and course handouts.  Please be sure to 
reference the page/slide number and quote the particular content in your justification. 

 
 

 Proble
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Point Value Your score Topic 

Meg 1 24  Baseband Pulse Amplitude Modulation 
Charles 2 28  QAM Communication Performance 
Calvin 3 24  QAM Constellation Derotation 

Mrs. Which 4 24  Potpourri 
 Total 100   

  



Problem 2.1. Baseband Pulse Amplitude Modulation. 24 points. 
A baseband pulse amplitude modulation transmitter is described as 

 
where 

a[n] symbol amplitude fs sampling rate fsym symbol rate g[m] pulse shape 
J  bits/symbol   L samples/symbol Ng symbol periods in a pulse shape 

For Ng = 4 and L = 20, a plot is shown below for 10 symbol periods over 0 to 30 ms of s[m] after it had 
passed through a digital-to-analog converter, and the symbol amplitudes a[n] are shown as a stem plot: 

 
(a) What is the value of J, the number of bits per symbol?  Why?  3 points. 

From the stem plot, the symbol amplitudes are -6, -2, 2, and 6.  Four levels means J = 2 bits. 
(b) If the spacing between constellation points is 2d, what is the value of d?  Why?  3 points. 

4-PAM has symbol amplitudes of -3d, - d, d, and 3d.  Hence, d = 2. 
(c) Draw a constellation map with Gray coding.  3 points. 

Gray coding means that the bit patterns in two adjacent symbols only differ by 
one bit to minimize the number of bit errors when a symbol error occurs.  !  

(d) Accurately compute the symbol time, Tsym, in milliseconds.  3 points. 
The symbol period is (30 ms) / (10 symbol periods) = 3 ms. 

(e) Give a formula for the pulse shape, g[m].  How many samples are in g[m]?  6 points. 

Start with continuous-time sinc pulse 𝒈 𝒕 =
𝐬𝐢𝐧 𝟐𝝅 𝟏𝟐 𝒇𝒔𝒚𝒎  𝒕  

𝟐𝝅 𝟏𝟐 𝒇𝒔𝒚𝒎  𝒕
= 𝐬𝐢𝐧 𝝅 𝒇𝒔𝒚𝒎 𝒕  

𝝅 𝒇𝒔𝒚𝒎 𝒕
 for 

−∞ < 𝒕 < ∞. Sample h(t) at 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 to get 𝒉 𝒎 = 𝐬𝐢𝐧 𝝎𝟎 𝒎  
𝝎𝟎 𝒎

 where 𝝎𝟎 =
𝝅
𝑳
 . 

The pulse shape has Ng L = 80 samples in it. 
(f) Infer an upper bound on the amplitude of s[m] as a function of d, J and Ng.  6 points. 

(2J – 1) d Ng because (2J – 1) d is the maximum symbol amplitude and Ng symbol periods are 
added in a baseband signal. 

Lecture Slides 7-14 & 7-15; 
Lecture 13; JSK Ch. 8; 
Lab #5; HW 5.2, 5.3, 6.1, 6.2 



MATLAB Code Used to Create the Baseband PAM Signal Plot in Problem 2.1 
 
% Spring 2018 Midterm #2 
% m is sample index 
% n is symbol index 
% 
% Simulation parameters 
N = 12;      % Number symbol periods to generate 
% Pulse shape g[m] 
Ng = 4;      % Number symbol periods in pulse 
L = 20;      % Samples/symbol period in pulse 
f0 = 1/L; 
midpt = Ng*L/2; 
m = (-midpt) : (midpt-1); 
g = sinc(f0*m); 
% 4-PAM symbol amplitudes 
d = 2; 
pamLevels = 4; 
symAmp = (2*randi(pamLevels,[1,N]) - 5)*d; 
symAmp(1) = d; 
symAmp(2) = -d; 
symAmp(3) = -(pamLevels-1)*d; 
symAmp(4) = (pamLevels-1)*d; 
symAmp(5) = (pamLevels-1)*d; 
symAmp(6) = -(pamLevels-1)*d; 
symAmp(7) = (pamLevels-1)*d; 
symAmp(8) = -(pamLevels-1)*d; 
symAmp(9) = -(pamLevels-1)*d; 
symAmp(10) = (pamLevels-1)*d; 
% Baseband PAM signal for N symbol periods 
mmax = N*L; 
v = zeros(1,mmax); 
v(1:L:end) = symAmp;        % interpolation 
s = conv(v, g);             % pulse shaping 
slength = length(s);        % trim result 
s = s(midpt+1:slength-midpt+1); 
% Plots 
Tsym = 3; 
fsym = 1/Tsym; 
fs = L*fsym; 
Ts = 1/fs; 
Mmax = length(s); 
m = 0 : (Mmax-1); 
t = m*Ts; 
Nmax = Mmax / L; 
n = 0 : (Nmax-1); 
figure; 
plot(t,s); 
hold on; 
stem(n*Tsym,symAmp); 
hold off; 
xlim( [0 (Nmax-2)*Tsym-Ts] );   % Plot N-2 symbol periods 
ylim( [-11 11] ); 
xlabel('Time (ms)'); 
title('Baseband PAM Signal s(t)'); 

  



Problem 2.2  QAM Communication Performance. 28 points.  
Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 
decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 
(a) Peak transmit power 18d 2 20d 2 
(b) Average transmit power 10d 2 11d 2 
(c) Draw the decision regions for the right constellation on top of the right constellation. 
(d) Number of type I regions 4 4 
(e) Number of type II regions 8 8 
(f) Number of type III regions 4 4 
(g) Probability of symbol error 
for additive Gaussian noise 
with zero mean & variance σ2 

3𝑄
𝑑
𝜎 −

9
4𝑄

! 𝑑
𝜎  

 
𝟑𝑸

𝒅
𝝈 −

𝟗
𝟒𝑸

𝟐 𝒅
𝝈  

 
 

The symbol error probability for the right constellation is the same as the symbol error 
probability of the left constellation because the right constellation has the same number of type I, 
II and III decision regions. 
 
(h) Consider using the constellations in upconverted QAM.  In the QAM receiver, how would the 
Costas loop for the phase locked loop perform for the right constellation vs. the left constellation? 
7 points.  

The Costas loop is an adaptive method based on steepest descent for tracking the phase offset at 
in a receiver at the sampling rate.  The update in phase offset is the stepsize times the output of 
in-phase and the quadrature baseband channels (JSK page 208).  In the right constellation, 
either the in-phase component or the quadrature component is zero for half of the constellation 
points.   That is, for these 8 out of 16 constellation points, there is no transmit power in either the 
in-phase or quadrature channel.  During these symbol periods, the Costas loop will not adapt, or 
if it adapts, it will be solely due to thermal noise and other impairments in the system.  

Lecture Slides 15-12 to 15-15; 
JSK Sections 16.1-16.4; 
Lab #6; HW 6.1, 6.3 



Problem 2.3. QAM Constellation Derotation.  24 points.  
A baseband Quadrature Amplitude Modulation (QAM) receiver is given below 

 
where 𝚤[𝑛] and 𝑞 𝑛  are the received in-phase and quadrature symbol amplitudes at symbol index n. 
At the receiver, the QAM constellation may rotate due to a mismatch in the carrier frequencies. 

A phase locked loop running at the sampling rate could track the time-varying phase that is due to the 
carrier frequency mismatch. 

An alternative is to derotate the constellation at the symbol rate by multiplying the complex symbol 
𝚤 𝑛 + 𝑗 𝑞[𝑛] by 𝑒!", i.e. 𝑖 𝑛 + 𝑗 𝑞 𝑛 = 𝚤 𝑛 + 𝑗 𝑞 𝑛 𝑒!" = 𝚤 𝑛 + 𝑗 𝑞 𝑛 (cos𝜃 + 𝑗 sin𝜃): 

𝑖 𝑛 = 𝚤 𝑛 cos𝜃 −  𝑞 𝑛 sin𝜃   and    𝑞 𝑛 = 𝑞 𝑛 cos𝜃 +  𝚤 𝑛 sin𝜃 

We will adapt the phase offset 𝜃 based on the error vector magnitude 𝑒[𝑛] in the decision device, i.e.  

𝑒! 𝑛 = 𝑖 𝑛 − 𝚤 𝑛 ! + 𝑞 𝑛 − 𝑞 𝑛 ! 
 

(a) Give an objective function 𝐽 𝑒 𝑛 .  6 points. 

𝑱 𝒆 𝒏 =  
𝟏
𝟐 𝒆

𝟐 𝒏 =
𝟏
𝟐 𝒊 𝒏 − ! 𝒏 𝟐 + 𝒒 𝒏 − 𝒒 𝒏 𝟐 

(b) Derive the update equation for 𝜃!!!, where k is a symbol index. 9 points. 

We seek to update the phase offset to minimize the mean squared error measure in part (a) 
and the update would occur at the symbol rate: 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁
𝒅𝑱 𝒆 𝒌
𝒅𝜽

𝜽!𝜽𝒌

= 𝜽𝒌 − 𝝁
𝒅
𝒅𝜽

𝟏
𝟐 𝒊 𝒌 − ! 𝒌 𝟐 + 𝒒 𝒌 − 𝒒 𝒌 𝟐

𝜽!𝜽𝒌
 

Using the chain rule for differentiation, 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌
𝒅𝒊[𝒌]
𝒅𝜽 + 𝒒 𝒌 − 𝒒 𝒌

𝒅𝒒[𝒌]
𝒅𝜽

𝜽!𝜽𝒌

 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌 −! 𝒌 𝐬𝐢𝐧𝜽−  𝒒 𝒌 𝐜𝐨𝐬𝜽
+ 𝒒 𝒌 − 𝒒 𝒌 −𝒒 𝒌 𝐬𝐢𝐧𝜽+  ! 𝒌 𝐜𝐨𝐬𝜽

𝜽!𝜽𝒌
 

Lecture Slide 16-4; 
JSK Section 16.7; 
Lab #6; HW 5.1, 6.1, 6.3 



Using the fact that 𝒊 𝒌 = ! 𝒌 𝐜𝐨𝐬𝜽−  𝒒 𝒌 𝐬𝐢𝐧𝜽 and 𝒒 𝒌 = 𝒒 𝒌 𝐜𝐨𝐬𝜽+  ! 𝒌 𝐬𝐢𝐧𝜽, 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 𝒊 𝒌 − ! 𝒌 −𝒒 𝒌 + 𝒒 𝒌 − 𝒒 𝒌 𝒊 𝒌
𝜽!𝜽𝒌

 

And finally, we have the computationally simple update for the phase offset to be 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 ! 𝒌 𝒒 𝒌 − 𝒒 𝒌 𝒊[𝒌]  
 

(c) What range of values would you recommend for µ?   3 points. 

For convergence, use small positive values for µ , e.g. 0.01 or 0.001, should be used. 
When µ is zero, the update equation would not be able to update. 
When µ is either negative or a large positive number, the update will diverge. 

 
(d) This method can work with or without a training sequence.  If you were to use a training sequence, 

which one would you use?  Why?  6 points. 

When using a training sequence, we’d know i[k] and q[k] in advance to compute the update 

𝜽𝒌!𝟏 = 𝜽𝒌 − 𝝁 ! 𝒌 𝒒 𝒌 − 𝒒 𝒌 𝒊[𝒌]  

To generate the symbol amplitudes, one could use a maximal-length pseudo-noise to generate 
the bit stream and then use the constellation map to generate the equivalent symbol 
amplitudes. 

 

Please see JSK Section 16.7 Baseband Derotation on page 384.  Please note that angle in the 
above problem θ  is actually –θ  in JSK Section 16.7.  If one multiplies both sides of the update 
equation by -1, 

𝜽𝒌!𝟏
𝑱𝑺𝑲 = 𝜽𝒌

𝑱𝑺𝑲 − 𝝁 𝒊 𝒌 𝒒 𝒌 − 𝒒 𝒌 ! 𝒌  

  



Problem 2.4.  Potpourri.  24 points 
(a) What is the primary advantage of using symbol amplitudes of -3d, -d, d and 3d for 4-level pulse 

amplitude modulation instead of d, 3d, 5d, and 7d?  6 points. 
First set of symbol amplitudes:  peak power is 9d2 and average power is 5d2. 
Second set of symbol amplitudes:  peak power is 49d2 and average power is 21d2. 
Symbol amplitudes of -3d, -d, d and 3d have much lower peak and average power. 

(b) How will fifth-generation (5G) cellular communication systems be able to provide 10 times the 
average and peak bit rates of fourth-generation (4G) cellular 
communication systems?   6 points. 
Bit rate is proportional to bandwidth. 
For QAM, bit rate is J fsym where J is the number of bits/symbol and fsym is the symbol rate, 
and the transmission bandwidth is (1+α) fsym where α  is the rolloff 
parameter for the raised cosine (or square root raised cosine). 
5G and 4G communication systems divide a wide transmission band in 
narrow transmission bands, and each narrowband transmission carries a 
QAM signal.  The narrowband QAM signals are transmitted in parallel. 
To achieve 10x the average and peak bit rates, 5G will use 10x the transmission bandwidth.  
The 28 GHz millimeter wave band will one of the bands used to give the larger bandwidth. 

(c) For each communication subsystem below, advocate using either a discrete-time digital 
implementation or a continuous-time analog implementation. 

i. Baseband processing. 3 points. 
Discrete-time digital implementation.  Baseband processing occurs in both the 
transmitter and receiver.  Baseband bandwidth W, which is half of the transmission 
bandwidth, is generally small enough to enable cost effective analog-to-digital and 
digital-to-analog converters running at sample rates fs > 2 W and cost effective 
processing using programmable processors.  A discrete-time digital implementation 
would allow a lot of flexibility in how the baseband signal could be processed. 

ii. Upconversion to carrier frequencies greater than 1 GHz. 3 points. 
Continuous-time analog implementation.  The transmission 
band is from fc – W to fc + W where fc is the carrier frequency 
and W is the baseband bandwidth.  For a discrete-time 
digital implementation, the digital-to-analog converter would have to run at a 
sampling rate of at least 2 (fc + W). When fc > 1 GHz, the digital-to-analog converter, 
and programmable processors would not be able to keep up. 

(d) In the automatic gain control (AGC) block diagram given below, the analog-to-digital converter 
outputs r[m] which is a signed integer of B bits.  Give a formula that uses r[m] and the adapted 
gain c(t) to create a floating-point approximation of r1(t).  This type of floating-point analog-to-
digital conversion is used in practice, e.g. in cellular basestations.  6 points. 

𝒓 𝒕 = 𝒄(𝒕)𝒓𝟏(𝒕) and hence 𝒓𝟏(𝒕) =
𝒓 𝒕
𝒄 𝒕

 

Gain c(t) should not be 0: 

𝒓𝟏[𝒎] =
𝒓[𝒎]
𝒄[𝒎] 

Lecture Slides 
13-3, 14-27, 
15-10, 15-16 

Lecture Slides 7-12, 13-3, 16-16; 
HW 5.3, 6.3; Lab #5-6; Handout G 

Lecture Slide 16-16; 
Lecture discussion; 
Midterm #2 Spring 
2014 Problem 2.3 

Lectures 7, 8, 10; HW 5.3; Labs #5-6 

Lectures 7, 8, 10; 
Lecture Slides 15-3 & 15-4; 
HW 5.3, 6.1, 6.2; Labs #5-6; 

Lecture Slide 16-5; 
JSK Sections 6.7, 
6.8, 9.3; HW 7.3 

Handout H 


