The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm \#2
Prof. Brian L. Evans
Date: May 4, 2018
Course: EE 445S

Name: \qquad
Last,
First

- The exam is scheduled to last 50 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. Disable all wireless access from your standalone computer system.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares \& Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

Problem	Point Value	Your score	Topic
1	24		Baseband Pulse Amplitude Modulation
2	28		QAM Communication Performance
3	24		QAM Constellation Derotation
4	24		Potpourri
Total	100		

Problem 2.1. Baseband Pulse Amplitude Modulation. 24 points.
A baseband pulse amplitude modulation transmitter is described as

where

$$
\begin{array}{lll}
a[n] \text { symbol amplitude } & f_{s} \text { sampling rate } & f_{s y m} \text { symbol rate } \quad g[m] \text { pulse shape } \\
J \text { bits/symbol } & L \text { samples/symbol } & N_{g} \text { symbol periods in a pulse shape }
\end{array}
$$

For $N_{g}=4$ and $L=20$, a plot is shown below for 10 symbol periods over 0 to 30 ms of $s[\mathrm{~m}]$ after it had passed through a digital-to-analog converter, and the symbol amplitudes $a[n]$ are shown as a stem plot:

(a) What is the value of J, the number of bits per symbol? Why? 3 points.
(b) If the spacing between constellation points is $2 d$, what is the value of d ? Why? 3 points.
(c) Draw a constellation map with Gray coding. 3 points.
(d) Accurately compute the symbol time, $T_{\text {sym }}$, in milliseconds. 3 points.
(e) Give a formula for the pulse shape, $g[m]$. How many samples are in $g[m]$? 6 points.
(f) Infer an upper bound on the amplitude of $s[m]$ as a function of d, J and $N_{g} .6$ points.

Problem 2.2 QAM Communication Performance. 28 points.
Consider the two 16-QAM constellations below. Constellation spacing is $2 d$.

Energy in the pulse shape is 1 . Symbol time $T_{\text {sym }}$ is 1 s . The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.
Each part below is worth 3 points. Please fully justify your answers.

	Left Constellation	Right Constellation
(a) Peak transmit power	$18 d^{2}$	
(b) Average transmit power	$10 d^{2}$	
(c) Draw the decision regions for the right constellation on top of the right constellation.		
(d) Number of type I regions	4	
(e) Number of type II regions	8	
(f) Number of type III regions	4	
(g) Probability of symbol error for additive Gaussian noise with zero mean \& variance σ^{2}	$3 Q\left(\frac{d}{\sigma}\right)-\frac{9}{4} Q^{2}\left(\frac{d}{\sigma}\right)$	

(h) Consider using the constellations in upconverted QAM. In the QAM receiver, how would the Costas loop for the phase locked loop perform for the right constellation vs. the left constellation? 7 points.

Problem 2.3. QAM Constellation Derotation. 24 points.
A baseband Quadrature Amplitude Modulation (QAM) receiver is given below

where $\hat{\imath}[n]$ and $\hat{q}[n]$ are the received in-phase and quadrature symbol amplitudes at symbol index n. At the receiver, the QAM constellation may rotate due to a mismatch in the carrier frequencies.
A phase locked loop running at the sampling rate could track the time-varying phase that is due to the carrier frequency mismatch.
An alternative is to derotate the constellation at the symbol rate by multiplying the complex symbol $\hat{\imath}[n]+j \hat{q}[n]$ by $e^{j \theta}$, i.e. $i[n]+j q[n]=(\hat{\imath}[n]+j \hat{q}[n]) e^{j \theta}=(\hat{\imath}[n]+j \hat{q}[n])(\cos \theta+j \sin \theta):$

$$
i[n]=\hat{\imath}[n] \cos \theta-\hat{q}[n] \sin \theta \quad \text { and } \quad q[n]=\hat{q}[n] \cos \theta+\hat{\imath}[n] \sin \theta
$$

We will adapt the phase offset θ based on the error vector magnitude $e[n]$ in the decision device, i.e.

$$
e^{2}[n]=(i[n]-\hat{\imath}[n])^{2}+(q[n]-\hat{q}[n])^{2}
$$

(a) Give an objective function $J(e[n]) .6$ points.
(b) Derive the update equation for θ_{k+1}, where k is a symbol index. 9 points.
(c) What range of values would you recommend for μ ? 3 points.
(d) This method can work with or without a training sequence. If you were to use a training sequence, which one would you use? Why? 6 points.

Problem 2.4. Potpourri. 24 points
(a) What is the primary advantage of using symbol amplitudes of $-3 d,-d, d$ and $3 d$ for 4-level pulse amplitude modulation instead of $d, 3 d, 5 d$, and $7 d$? 6 points.
(b) How will fifth-generation (5G) cellular communication systems be able to provide 10 times the average and peak bit rates of fourth-generation $(4 \mathrm{G})$ cellular communication systems? 6 points.
(c) For each communication subsystem below, advocate using either a discrete-time digital implementation or a continuous-time analog implementation.
i. Baseband processing. 3 points.
ii. Upconversion to carrier frequencies greater than 1 GHz .3 points.
(d) In the automatic gain control (AGC) block diagram given below, the analog-to-digital converter outputs $r[m]$ which is a signed integer of B bits. Give a formula that uses $r[m]$ and the adapted gain $c(t)$ to create a floating-point approximation of $r_{1}(t)$. This type of floating-point analog-todigital conversion is used in practice, e.g. in cellular basestations. 6 points.

