The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

Prof. Brian L. Evans

Date: May 8, 2019

Course: EE 445S

Name:

Last,

First

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. **Disable all wireless access from your standalone computer system**.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

Problem	Point Value	Your score	Торіс
1	24		Bandpass PAM Receiver Tradeoffs
2	30		QAM Communication Performance
3	28		QAM Receiver Design
4	18		Bandpass PAM Receiver Decisions
Total	100		

Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.

A bandpass pulse amplitude modulation (PAM) receiver is described as

where m is the sampling index and n is the symbol index, and has system parameters

 $\hat{a}[n]$ received symbol amplitude f_s sampling rate f_{sym} symbol rate g[m] raised cosine pulse J bits/symbol L samples/symbol M number of levels, i.e. $M = 2^J$ ω_c carrier frequency in rad/sample

The only impairment being considered is additive thermal noise w(t).

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal.

(a) For the additive thermal noise w(t),

- i. What is the probability distribution used to model the amplitude values of w(t)? 3 points.
- ii. What is the justification for using that probability distribution? 3 points.

(b) If an optimal matched filter is used for the LPF,

- i. Which signal in the receiver is being optimized? 3 points
- ii. By what measure is the signal in part (b)i optimal? *3 points*.
- (c) Give formulas for communication signal quality measures below in terms of system parameters:
 - i. Bit rate. 3 points
 - ii. Probability of symbol error. 3 points
- (d) Based on the formulas in (c), what's the impact on bit rate and probability of symbol error if
 - i. Transmit power is increased. 3 points
 - ii. Number of samples/symbol, L, is increased. 3 points

Problem 2.2 QAM Communication Performance. 30 points.

Consider the two 16-QAM constellations below. Constellation spacing is 2d.

Energy in the pulse shape is 1. Symbol time T_{sym} is 1s. The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.

Each part below is worth 3 points. Please fully justify your answers.

	Left Constellation	Right Constellation			
(a) Peak transmit power	$18d^{2}$				
(b) Average transmit power	$10d^{2}$				
(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right					
constellation that will minimize the probability of symbol error using such decision regions.					
(d) Number of type I regions	4				
(e) Number of type II regions	8				
(f) Number of type III regions	4				
(g) Probability of symbol error	$3O\left(\frac{d}{d}\right) - \frac{9}{9}O^{2}\left(\frac{d}{d}\right)$				
for additive Gaussian noise	$S_{\mathcal{Q}}(\overline{\sigma})^{-}\overline{4}_{\mathcal{Q}}(\overline{\sigma})$				
with zero mean & variance σ^2					
(h) Express d/σ as a function	$10d^2$				
of the Signal-to-Noise Ratio	$SNR = -\frac{\sigma^2}{\sigma^2}$				
(SNR) in linear units					
	d SNR				
	$\frac{1}{\sigma} = \sqrt{10}$				

(i) In a 16-QAM receiver for the right constellation, an estimated symbol amplitude -3d - j 0.5 d. What is the decoded transmitted constellation point using

- Your constellation regions given above. 3 points
- Smallest Euclidean distance. 3 points

Problem 2.3. Quadrature Amplitude Modulation (QAM) Receiver Design. 28 points.

Some QAM receivers have a separate analog-to-digital (A/D) converter for the in-phase component and the quadrature component, as shown below.

System parameters: *B* bits at A/D output, 2*d* constellation spacing, f_s sampling rate, f_{sym} symbol rate, *J* bits/symbol, *L* samples/symbol, and *M* constellation points (i.e. $M = 2^J$). *B* is much greater than *J*.

Assume a rectangular, uniformly spaced, QAM constellation.

- (a) If the signal-to-noise ratio (SNR) due to thermal noise in the system increases by 6 dB, and the system is matching the SNR due to thermal noise with the SNR due to quantization noise,
 - i. How many additional bits are possible for each A/D converter? 3 points.
 - ii. What is the overall dB/bit increase in the system? 4 points.
- (b) What is the largest value of d that prevents clipping in the A/D converter? 3 points.
- (c) Receiver supports up to 16-QAM. For a 4-QAM training signal, develop an adaptive automatic gain control (AGC) algorithm. Gain c(t) will be applied to the in-phase and quadrature channels. The gain sampled at the symbol time, $c[n] = c(n T_{sym})$, will be adapted every symbol period.
 - i. Give an objective function J(n). 6 points.
 - ii. Derive an update equation for gain c[n]. Compute all derivatives. Simplify result. 9 points
 - iii. What range of values would you recommend for the step size μ ? Why? 3 points.

Problem 2.4. Bandpass Pulse Amplitude Modulation Receiver Decisions. 18 points

A bandpass pulse amplitude modulation (PAM) receiver is described as

where m is the sampling index and n is the symbol index, and has system parameters

 $\hat{a}[n]$ received symbol amplitude f_s sampling rate f_{sym} symbol rateg[m] raised cosine pulseJ bits/symbolL samples/symbolM number of levels, i.e. $M = 2^J$ ω_c carrier frequency in rad/sample

The only impairment being considered is additive thermal noise w(t).

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal.

- (b) Consider an *M*-PAM bandpass receiver. The decision block quantizes the estimated symbol amplitude $\hat{a}[n]$ for *M*-PAM into a symbol of bits. Give formulas for the computational complexity as a function of *M* for each decision block quantization algorithm below. *9 points*.
 - *i.* Compare $\hat{a}[n]$ against each constellation point in the transmitter constellation map.
 - *ii.* Divide-and-conquer to discard half of the candidate constellation points each comparison.
 - iii. Determine the index of the closest constellation point using round $\left(\frac{\hat{a}[n]-d}{2d}\right)$, limit the unsigned index to a value between 0 and *M*-1 inclusive, and then use the unsigned index to find the symbol of bits in the lookup table for the constellation map.