The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm \#2
Prof. Brian L. Evans
Date: May 8, 2019
Course: EE 445S

Name: \qquad
Last,
First

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. Disable all wireless access from your standalone computer system.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares \& Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

Problem	Point Value	Your score	Topic
1	24		Bandpass PAM Receiver Tradeoffs
2	30		QAM Communication Performance
3	28		QAM Receiver Design
4	18		Bandpass PAM Receiver Decisions
Total	100		

Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.
A bandpass pulse amplitude modulation (PAM) receiver is described as

where m is the sampling index and n is the symbol index, and has system parameters
$\hat{a}[n]$ received symbol amplitude $\quad f_{s}$ sampling rate $\quad f_{\text {sym }}$ symbol rate
$g[m]$ raised cosine pulse J bits/symbol L samples/symbol
M number of levels, i.e. $M=2^{J} \quad \omega_{c}$ carrier frequency in rad/sample
The only impairment being considered is additive thermal noise $w(t)$.
Hence, $r(t)=s(t)+w(t)$ where $s(t)$ is the transmitted bandpass PAM signal.
(a) For the additive thermal noise $w(t)$,
i. What is the probability distribution used to model the amplitude values of $w(t)$? 3 points.
ii. What is the justification for using that probability distribution? 3 points.
(b) If an optimal matched filter is used for the LPF,
i. Which signal in the receiver is being optimized? 3 points
ii. By what measure is the signal in part (b)i optimal? 3 points.
(c) Give formulas for communication signal quality measures below in terms of system parameters:
i. Bit rate. 3 points
ii. Probability of symbol error. 3 points
(d) Based on the formulas in (c), what's the impact on bit rate and probability of symbol error if
i. Transmit power is increased. 3 points
ii. Number of samples/symbol, L, is increased. 3 points

Problem 2.2 QAM Communication Performance. 30 points.
Consider the two 16-QAM constellations below. Constellation spacing is $2 d$.

Energy in the pulse shape is 1 . Symbol time $T_{\text {sym }}$ is 1 s . The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.
Each part below is worth 3 points. Please fully justify your answers.

	Left Constellation	Right Constellation
(a) Peak transmit power	$18 d^{2}$	
(b) Average transmit power	$10 d^{2}$	
(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right constellation that will minimize the probability of symbol error u using such decision regions.		
(d) Number of type I regions	4	
(e) Number of type II regions	8	
(f) Number of type III regions	4	
(g) Probability of symbol error for additive Gaussian noise with zero mean \& variance σ^{2}	$3 Q\left(\frac{d}{\sigma}\right)-\frac{9}{4} Q^{2}\left(\frac{d}{\sigma}\right)$	
(h) Express d / σ as a function of the Signal-to-Noise Ratio (SNR) in linear units	$\mathrm{SNR}=\frac{10 d^{2}}{\sigma^{2}}$	

(i) In a 16-QAM receiver for the right constellation, an estimated symbol amplitude $-3 d-j 0.5 d$. What is the decoded transmitted constellation point using

- Your constellation regions given above. 3 points
- Smallest Euclidean distance. 3 points

Problem 2.3. Quadrature Amplitude Modulation (QAM) Receiver Design. 28 points.
Some QAM receivers have a separate analog-to-digital (A/D) converter for the in-phase component and the quadrature component, as shown below.

$-2 \sin \left(2 \pi f_{\mathrm{c}} t\right)$
System parameters: B bits at A / D output, $2 d$ constellation spacing, f_{s} sampling rate, $f_{\text {sym }}$ symbol rate, J bits/symbol, L samples/symbol, and M constellation points (i.e. $M=2^{J}$). B is much greater than J. Assume a rectangular, uniformly spaced, QAM constellation.
(a) If the signal-to-noise ratio (SNR) due to thermal noise in the system increases by 6 dB , and the system is matching the SNR due to thermal noise with the SNR due to quantization noise,
i. How many additional bits are possible for each A/D converter? 3 points.
ii. What is the overall $\mathrm{dB} /$ bit increase in the system? 4 points.
(b) What is the largest value of d that prevents clipping in the A / D converter? 3 points.
(c) Receiver supports up to 16-QAM. For a 4-QAM training signal, develop an adaptive automatic gain control (AGC) algorithm. Gain $c(t)$ will be applied to the in-phase and quadrature channels. The gain sampled at the symbol time, $c[n]=c\left(n T_{\text {sym }}\right)$, will be adapted every symbol period.
i. Give an objective function $J(n) .6$ points.
ii. Derive an update equation for gain $c[n]$. Compute all derivatives. Simplify result. 9 points
iii. What range of values would you recommend for the step size μ ? Why? 3 points.

Problem 2.4. Bandpass Pulse Amplitude Modulation Receiver Decisions. 18 points
A bandpass pulse amplitude modulation (PAM) receiver is described as

where m is the sampling index and n is the symbol index, and has system parameters
$\hat{a}[n]$ received symbol amplitude $\quad f_{s}$ sampling rate $\quad f_{\text {sym }}$ symbol rate
$g[m]$ raised cosine pulse $\quad J$ bits/symbol L samples/symbol
M number of levels, i.e. $M=2^{J} \quad \omega_{c}$ carrier frequency in rad/sample
The only impairment being considered is additive thermal noise $w(t)$.
Hence, $r(t)=s(t)+w(t)$ where $s(t)$ is the transmitted bandpass PAM signal.
(a) Consider an 8-PAM bandpass transmitter.
symbol $\left.\begin{array}{l}\text { symbol } \\ \text { of bits } \\ \text { amplitude } a_{n}\end{array}\right]$
(b) Consider an M-PAM bandpass receiver. The decision block quantizes the estimated symbol amplitude $\hat{a}[n]$ for M-PAM into a symbol of bits. Give formulas for the computational complexity as a function of M for each decision block quantization algorithm below. 9 points.
i. Compare $\widehat{a}[n]$ against each constellation point in the transmitter constellation map.
ii. Divide-and-conquer to discard half of the candidate constellation points each comparison.
iii. Determine the index of the closest constellation point using round $\left(\frac{\hat{a}[n]-d}{2 d}\right)$, limit the unsigned index to a value between 0 and $M-1$ inclusive, and then use the unsigned index to find the symbol of bits in the lookup table for the constellation map.

