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Problem 2.1. Baseband PAM System.  24 points. 

Consider a baseband pulse amplitude modulation (PAM) system with 

the parameters on the right. 

The PAM system does not have A/D or D/A converters. 

The problem focuses on the following part of the baseband PAM system: 

 

 

 

 

 

where w(t) is a Gaussian random signal with zero mean and variance 2. 

Assume the receiver is synchronized with the transmitter in parts (a), (b) and (c). 

(a) Using the PAM System Parameters, give a formula for h(t) that maximizes the SNR at the 

estimated symbol amplitude y(Tsym)?  4 points. 

The optimal matched filter, per lecture slide 14-15, maximizes the SNR at the estimated 

symbol amplitude y(Tsym) which in turn minimizes the symbol error probability because it is 

a monotonically decreasing function vs. SNR.  The optimal matched filter impulse response is 

𝒉(𝒕) = 𝒌 𝒈∗(𝑻𝒔𝒚𝒎 − 𝒕) where k is a real-valued constant (k  0 in practice). 

(b) Using your answer in part (a), plot h(t) when g(t) is the rectangular pulse shown below.  4 points. 

 
(c) Using your answer in part (b), plot y(t) assuming there is no noise, 

i.e. w(t) = 0.  4 points. 

𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) + 𝒘(𝒕) ∗ 𝒉(𝒕) 

With 𝒘(𝒕) = 𝟎, 𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) 

Convolution gives a triangular pulse whose peak value 

occurs at the symbol time, 𝑻𝒔𝒚𝒎 .  Note that k can be negative. 

(d) Assume the receiver has an accurate Tsym but needs to find a symbol timing offset  to synchronize 

with the transmitter as shown below.  Develop an adaptive method to update  in the nth symbol 

period using analog continuous-time signal processing; e.g., a differentiator circuit will compute a 

derivative of an analog continuous-time signal.  Use g(t) and h(t) from part (b) 

i. Give an objective function. 6 points. 

ii. Give the update for n+1given n3 points. 

iii. How would you determine the value of the 

step size ?  3 points. 

See next two pages for two different solutions for (d). 

PAM System Parameters 

2d   constellation spacing 

fsym  symbol rate 

g(t)  pulse shape 

h(t)  matched filter impulse 

response 

J      bits/symbol 

k      constant 

levels, i.e. M = 2J 

n     symbol index 

𝑁𝑔   symbol periods in g(t) 

Tsym symbol time 

 

 

Since g(t) is real-valued, complex conjugation 

has no effect.  g(-t) flips it with respect to the 

vertical axis, and g(Tsym – t) delays the flipped 

version by Tsym and we’re back to where we 

started with g(t).  Gain k is real-valued (k  0). 

Prologue: Lectures 13, 14, 16; JSK Sec. 2.10 & 2.11; JSK Ch. 8, 11, 12; Lab #5; WWM Ch. 17; HW 5.1, 

6.1, 6.2, 7.3; In-Lecture Assignment #3 and #4; Midterm 2.4 F17 & 2.4 F18; Haykin Ch. 14; Handout M 

 

Lecture 

Slide 

14-17 

Lecture 

Slide 

14-14 

Epilogue: PAM, QAM, and many other receivers perform symbol timing recovery (a.k.a. symbol 

synchronization) to improve communication performance. Adaptive systems using steepest descent/ascent 

methods are possible to implement in analog continuous-time circuits. 



Solution #1 for 2.1(d):  (A student’s solution is below with additional information in blue): 

i.      Give an objective function. 6 points. 

Define the error 𝒆[𝒏] between what we have and what we would like to have: 

𝒆[𝒏] = 𝒚[𝒏] − 𝒚(𝑻𝒔𝒚𝒎) = 𝒚[𝒏] − 𝒌 𝑻𝒔𝒚𝒎 where 𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔𝒚𝒎 + 𝝉). 

Define the objective function to be used to drive the error to zero: 

𝑱( 𝒆[𝒏] )  =  
𝟏

𝟐
 𝒆𝟐[𝒏] 

ii.     Give the update for n+1given n3 points. 

Seek to minimize the objective function to drive the error to zero: 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] − 𝝁 
𝒅

𝒅𝝉
 𝑱( 𝒆[𝒏] )]

𝝉=𝝉[𝒏]
 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] − 𝝁 𝒆[𝒏] 
𝒅

𝒅𝝉
 𝒚[𝒏]]

𝝉=𝝉[𝒏]
= 𝝉[𝒏] − 𝝁 𝒆[𝒏] 𝒚′(𝒏 𝑻𝒔𝒚𝒎 + 𝝉[𝒏]) 

Although not asked, which is why the text is in blue here, here’s the system diagram 

with the differentiator and adaptive element to perform the update: 

 

The approach can be extended to any pulse shape when using 𝒆[𝒏] = 𝒚[𝒏] − 𝒚(𝑻𝒔𝒚𝒎). 

iii.    How would you determine the value of the step size ?  3 points. 

Choose a small positive value by using trial-and-error in simulation: 

 A negative value for  would cause the objective function to be minimize which 

would lead to minimizing the signal power. 

 A value of zero for  means that the update will not change the initial value of . 

 A large positive  value will lead to divergence of the adaptive algorithm.  

 

  



Solution #2 for 2.1(d): 

i.      Give an objective function. 6 points. 

Seek to maximize the power at the estimated symbol amplitude y(nTsym + ): 

𝑱(𝒚(𝒕)) =
𝟏

𝟐
𝒚𝟐(𝒕) where 𝒚(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) + 𝒘(𝒕) ∗ 𝒉(𝒕).  In 𝒚(𝒕), the noise term 

𝒏(𝒕) = 𝒘(𝒕) ∗ 𝒉(𝒕) is a Gaussian random signal with zero mean and variance 
𝝈𝟐

𝑻𝒔𝒚𝒎
 

because 𝒉(𝒕) is a lowpass filter with bandwidth 
𝟏

𝟐 𝑻𝒔𝒚𝒎
 (Sec. 4.12 Gaussian Processes, 

Haykin’s Communication Systems) and 𝒘(𝒕) is a Gaussian random signal with zero 

mean and variance 2.  Any sample of 𝒏(𝒕) is a Gaussian random variable 𝑵 (𝟎,
𝝈𝟐

𝑻𝒔𝒚𝒎
).  

Average noise power is 
𝝈𝟐

𝑻𝒔𝒚𝒎
 regardless of sampling time. 

In 𝒚(𝒕), the deterministic signal term  

𝒈𝟎(𝒕) = 𝒈(𝒕) ∗ 𝒉(𝒕) has its instantaneous 

power change with the sampling time.  

Recall that k can be negative. 

 

ii.     Give the update for n+1given n3 points. 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] + 𝝁 
𝒅

𝒅𝝉
 𝑱( 𝒚(𝒏𝑻𝒔𝒚𝒎 + 𝝉) )]

𝝉=𝝉[𝒏]
 

 

𝝉[𝒏 + 𝟏] = 𝝉[𝒏] + 𝝁 𝒚(𝒏𝑻𝒔𝒚𝒎 + 𝝉[𝒏]) 
𝒅

𝒅𝒕
𝒚(𝒕)]

𝒕=𝒏𝑻𝒔𝒚𝒎+𝝉[𝒏]
 

This update is also represented by the block diagram in solution #1. 

 

A differentiator circuit can be as simple as an RC and or RL circuit where output is 

tapped across resistor in the RC circuit or inductor in the RL circuit.  The above is for 

a general pulse shape and its matched filter.  For h(t) in part (b), we can simplify the 

derivative of y(t) by using a linear time-invariant (LTI) model for differentiation with 

impulse response v(t) per JSK Appendix G.2 Derivatives and Filters: 

𝒅

𝒅𝒕
𝒚(𝒕) = 𝒗(𝒕) ∗ (𝒉(𝒕) ∗ 𝒙(𝒕)) = (𝒗(𝒕) ∗ 𝒉(𝒕)) ∗ 𝒙(𝒕) = (𝜹(𝒕) − 𝜹(𝒕 − 𝑻𝒔𝒚𝒎)) ∗ 𝒙(𝒕) = 𝒙(𝒕) − 𝒙(𝒕 − 𝑻𝒔𝒚𝒎) 

 

iii.    How would you determine the value of the step size ?  3 points. 

Same as the answer in solution #1 for 2.1(d)iii on the previous page.  

https://en.wikipedia.org/wiki/Differentiator


Problem 2.2  QAM Communication Performance. 27 points.  

Consider the two 16-QAM constellations below.  Constellation spacing is 2d. 

 
Energy in the pulse shape is 1.  Symbol time Tsym is 1s.   The constellation on the left includes the 

decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 

(a) Peak transmit power 18d 2 34d 2 

(b) Average transmit power 10d 2 16d 2 

(c) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(d) Number of type I regions 4 0 

(e) Number of type II regions 8 12 

(f) Number of type III regions 4 4 

(g) Probability of symbol error 

for additive Gaussian noise 

with zero mean & variance 2 

3𝑄 (
𝑑

𝜎
) −

9

4
𝑄2 (

𝑑

𝜎
) 

 

𝟏𝟏

𝟒
𝑸 (

𝒅

𝝈
) −

𝟕

𝟒
𝑸𝟐 (

𝒅

𝝈
) 

(h) Express d/ as a function 

of the Signal-to-Noise Ratio 

(SNR) in linear units 

SNR =
10𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

10
 

𝐒𝐍𝐑 =
𝟏𝟔𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟏𝟔
 

(g) Approach #1: Same number of type 1-3 regions as F2020 2.2 gives same symbol error prob. 

Approach #2:  Lecture slides 15-12 to 15-14.  𝑷(𝒆) = 𝟏 − 𝑷(𝒄).  Let 𝒒 = 𝑸 (
𝒅

𝝈
).  

𝑷(𝒄) =
𝟑

𝟒
𝑷𝟐(𝒄) +

𝟏

𝟒
𝑷𝟑(𝒄) =

𝟑

𝟒
(𝟏 − 𝒒)(𝟏 − 𝟐𝒒) +

𝟏

𝟒
(𝟏 − 𝒒)𝟐  

𝑷(𝒄) =
𝟑

𝟒
(𝟏 − 𝟑𝒒 + 𝟐𝒒𝟐) +

𝟏

𝟒
(𝟏 − 𝟐𝒒 + 𝒒𝟐) = 𝟏 −

𝟏𝟏

𝟒
𝒒 +

𝟕

𝟒
𝒒𝟐 and 𝑷(𝒆) = 𝟏 − 𝑷(𝒄) =

𝟏𝟏

𝟒
𝒒 −

𝟕

𝟒
𝒒𝟐 

 (i) For the right constellation, will using the type I, II, and III rectangular decision regions lead to 

Gray coding for symbols?  Either give a Gray coding for the right constellation, or show that it is not 

possible.  3 points.  Gray coding means that any two symbols in adjacent decision regions can 

only differ by one bit.  The constellation point at d + jd has five adjacent decision regions, and 

hence, we cannot encode each pair to differ by one bit because a 16-QAM symbol only has 4 bits. 

Constellation 

Region Type 

I, II or IIII 

Peak power of 

34d2 at symbol 

ampl. 3d + j5d 

Epilogue: The right constellation wouldn’t be used in practice.  The right constellation has higher peak 

power, average power, and peak-to-average power ratio than the left one.  Unlike the left constellation, the 

right constellation cannot be Gray coded and its rectangular decision regions do not give the same result as 

Euclidean distance.  Both constellations have a fast binary search decoding algorithm. 

Average power 

is average of 

2d 2, 10d 2, 18d 2 

and 34d 2 

Prologue: Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P; 

Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20 

 



Problem 2.3. QAM Receiver Architecture Tradeoffs.  28 points. 

In this problem, you evaluate tradeoffs in the two 

QAM receiver architectures on the right: 

(1) Single analog-to-digital (A/D) converter 

(2) Two A/D converters, one for the in-phase 

channel and one for the quadrature channel 

In both architectures,  

r1(t) is the baseband QAM signal 

i is the in-phase component 

q is the quadrature component 

J bits per symbol (assume J is even) 

M constellation points where M = 2J 

Please evaluate the following tradeoffs. 

(a) Which architecture consumes less power in 

its A/D converters?  How much less?  9 points. 

In an A/D converter, power consumption is proportional to the sampling rate fs and 2B where 

B is the number of bits of amplitude resolution at the A/D output. 

Assume the sampling rate is the same for all A/D converters. Difference is in number of bits. 

Arch #1: The single A/D converter has to support all possible symbol 

amplitudes, so 𝑩 ≥ 𝑱. Power consumption is proportional to 2J.   

Arch #2: Each A/D converter supports a PAM constellation of J/2 bits, i.e. 𝑩 ≥ 𝑱/𝟐.  

Power consumption is proportional to 𝟐 𝟐𝑱/𝟐 = 𝟐 (𝟐𝟎.𝟓 𝑱) = 𝟐 (𝟐𝟎.𝟓)
𝑱

= 𝟐 √𝟐
 𝑱
. 

For minimum number of bits for all converters, Arch #1 consumes 
𝟐𝑱

𝟐 √𝟐
 𝑱 =

√𝟐
 𝑱

𝟐
 more 

power.  This ratio is {1, 2, 4, 8} for J = {2, 4, 6, 8}. 

If we use the minimum sampling rates for all A/D converters, Arch #1 will consume another 

factor of 
𝒇𝒄+𝑾

𝑾
 more power than Arch #2.  Note that fc > W for sinusoidal modulation. 

Arch #1 uses a sampling rate of fs > 2 (fc + W).  Here, the baseband PAM bandwidth is 

W = ½ fsym (1+) where (1+) is the bandwidth expansion factor.  For a raised cosine pulse 

shape, is the rollof factor in [0, 1].  For a rectangular pulse, See lecture slide 7-10. 

Arch #2 uses a sampling rate of fs > 2 W because it is sampling a baseband PAM signal.  

Demodulation filters are the analog continuous-time lowpass filters in the A/D converters.   

(b) Describe an automatic gain control (AGC) algorithm for architecture #2 including equations.  The 

algorithm has access to both A/D converter outputs. Give the computational complexity. 6 points. 

We modify AGC algorithm for Arch #1 on lecture slide 16-5 for signed 8-bit A/D converters: 

c-128, c0, c127 are counts for the number of times -128, 0, or 127, respectively, occurs in last 

N/2 samples in the first A/D converter and last N/2 samples in the second A/D converter. 

f-128, f0, f127 represent how frequently outputs -128, 0, 127 occur where 𝒇𝒊 =
𝒄𝒊

𝑵
. 

Update gain c(t) every  seconds using c(t) = A c(t – ) where A = 1 + 2 f0 – f-128 – f127. 

Arch #1 

Arch #2 

Carrier and symbol 

recovery not shown 

Prologue: Lectures 14-16; JSK Sec. 2.8, 2.10, 3.2, 3.4, 3.6, 5.3, 6.7, 11.5, 11.6; JSK Ch. 16 & App. G; Lab 

#6; WWM Ch. 18; HW 3.1, 6.3, 7.3; Midterm #2 Problem 2.1 F14, 2.4 Sp15, 2.3 Sp18, 2.3 Sp19 

Lecture Slides 

15-6 to 15-8 



Computational complexity (same as that of arch. #1 algorithm) 

Substituting 𝒇𝒊 =
𝒄𝒊

𝑵
 , 𝑨 =

𝑵 + 𝟐𝒄𝟎 − 𝒄−𝟏𝟐𝟖 − 𝒄𝟏𝟐𝟕

𝑵
 .  Computing the numerator takes 3 additions 

and 1 left shift by one bit to implement multiplication by two.  We would like a floating-

point value for A.  Numerator takes integer values between 0 and 2N, inclusive.  We could 

create a lookup table of 2N+1 entries to store all precomputed floating-point values for A 

and use the numerator as index into the lookup table.  A is computed every  seconds. 

For each sample, we need 6 comparisons to update the 3 counters according to the values 

of ir[m] and qr[m].  We update the 3 counters based on values of ir[m-N/2] and qr[m-N/2] 

that will be discarded from the circular buffers of ir[m] and qr[m] values. (For reduced 

storage, we would store the values of the changes to the counters for each sample in a 

circular buffers instead of the ir[m] and qr[m] values themselves.)  Assume N is even. 

(c) Describe a carrier detection algorithm for architecture #2 including equations.  The algorithm has 

access to both A/D converter outputs.  Give the computational complexity.  6 points. 

We modify the carrier detection algorithm for Arch #1 on lecture slide 16-9 as follows: 

Let 𝒙[𝒎] =  𝒊𝒓
𝟐[𝒎] + 𝒒𝒓

𝟐[𝒎] be the instantaneous power of the in-phase and quadrature 

baseband PAM channels combined.  (We assume the in-phase and quadrature baseband 

PAM channels are orthogonal, i.e. 90 degrees or 270 degrees out of phase.  In practice, the 

two channels are close enough to orthogonal for the purposes of a carrier detection 

algorithm. The loss of orthogonality is called IQ imbalance.)   

Compute average power using first-order IIR filter 𝒑[𝒎] = 𝒄 𝒑[𝒎 − 𝟏] + (𝟏 − 𝒄) 𝒙[𝒎] 
where 0 < c < 1.  The pole location is c.  The closer c is to 1, the more selective the filter 

(i.e. the more narrow the passband and the larger the stopband attenuation in dB). 

 If there is no transmission being received, assume there is transmission 

if 𝒑[𝒎] is larger than a large threshold. 

 If there is transmission being received, assume that the transmission 

has stopped if 𝒑[𝒎] is smaller than a small threshold.  

Computational complexity (2x of that of arch #1 algorithm): 

𝒙[𝒎] =  𝒊𝒓
𝟐[𝒎] + 𝒒𝒓

𝟐[𝒎] takes 2 multiplications and 1 addition per sample. 

𝒑[𝒎] = 𝒄 𝒑[𝒎 − 𝟏] + (𝟏 − 𝒄) 𝒙[𝒎] takes 2 multiplications and 1 addition per sample. 

Total run-time computational complexity: 4 multiplications and 2 additions per sample 

plus one threshold operation applied periodically. 

(d) Which architecture would you advocate using? Why? Describe the tradeoffs considered.  7 points. 

Arch #1 A/D converter consumes more power than the combined power consumption of the 

A/D converters in Arch #2 by a factor of (
𝒇𝒄+𝑾

𝑾
) (

√𝟐
 𝑱

𝟐
). 

In comparing baseband discrete-time signal processing, Arch #1 has one channel equalizer as 

well as pointwise multiplication and generation of cosine and sine signals.  Arch #2 has two 

channel equalizers, but this is offset because Arch #2 runs at less than half the sampling rate. 

Arch #1 advantages: fewer components. 

Arch #2 advantages: lower power consumption in the A/D conversion (which dominates 

power consumption in an analog/RF frontend) and lower baseband discrete-time complexity.  

Lecture 

Slide 16-9 



Problem 2.4.  Potpourri.  21 points. 

Please determine whether the following claims are true or false and support each answer 

with a brief justification. A true or false answer without any justification will not earn any 

points.  

(a) PAM and QAM transmission using the same constellation size and symbol rate will always have 

the same symbol error rate when both receivers are operating at the same received SNR.  3 points. 

False. For same symbol rate, the symbol error rate (symbol 

error probability) for 4-QAM is much lower than that of 4-

PAM for received SNR greater than 0 dB.  The plot on the 

right of symbol error rate vs. SNR in dB is from Handout P: 

Communication Performance of PAM vs. QAM Handout. As 

SNR -> – dB, curves converge to ¾; see part (g). 

(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a 

communication system. In a communication system, the pulse shape should be zero at 

non-zero integer multiples of the symbol duration 

and have its maximum value at the origin. 3 points. 

First Claim is True. In a PAM transmitter, the pulse 

shaping filter determines the baseband bandwidth, which is ½ 

fsym (1+) where (1+) is the bandwidth expansion factor over the ideal lowpass filter.  After 

upconversion in the analog/RF front end, the PAM transmission bandwidth would be fsym 

(1+) as shown above (the plot is from Spring 2020 Midterm 2.1).  For a QAM transmitter, the 

baseband signal in the frequency domain would be centered at frequency fc with bandwidth 

fsym (1+) as shown above, and the transmission bandwidth after upconversion in the 

analog/RF front end would be 2 fc + fsym (1+).   

Second Claim is True. The pulse shape is used as the impulse response of an 

FIR filter that interpolates the output of upsampling by L, where L is the 

number of samples in a symbol period.  For a non-causal pulse shape 

centered at the origin, the pulse shape should be zero at non-zero integer 

multiples of L so that the symbol amplitudes pass through unchanged.  That 

is, the FIR filter implements convolution; as the impulse response (pulse 

shape) is flipped and slid across the input signal, the zero crossings at a non-

zero integer multiples of the symbol duration (L samples) ensure that the 

symbol amplitudes remain unchanged.  See the plot on the right for L = 4 

from Lecture Slide 13-8. 

(c) The LTI components of wired and wireless channels have impulse 

responses of infinite duration, and each can be modeled as an FIR filter. Wired 

channel impulse responses do not change over time, whereas wireless channel 

impulse responses change over time.  3 points. 

Midterm 2.4(a) 

Fall 2015 

Prologue: These questions are from the second half of the semester.  References are given with each part. 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf


First claim is true.  Wired channels have impulse responses that resemble RLC circuits.  

From the transmitter to receiver in wireless channels, there can be a direct path, paths 

involving one reflection (bounce), paths involving two reflections (bounces), etc.  We can 

truncate the impulse responses to model the impulse responses as FIR.  See Lecture 12 on 

Wireless Impairments, slides 12-5 to 12-8. 

Second claim is false.  Impulse responses in wired channels change with temperature because 

resistance, capacitance and inductance depend on temperature across the wire. 

(d) A receiver in a digital communication system employs a variety of adaptive 

subsystems, including automatic gain control, carrier recovery, and symbol timing 

recovery. A transmitter in a digital communication system does not employ any 

adaptive systems.  3 points. 

First claim is true. Adaptive methods based on steepest descent for carrier recovery and 

symbol timing recovery are subjects of homework problems 6.1 and 6.2.  The JSK textbook 

discusses adaptive methods automatic gain control (pp. 120-128), carrier recovery (pp. 198-

220) and symbol timing recovery (pp. 250-269), with many based on steepest descent. 

Second claim is false.  Several examples of adaptive systems in the baseband transmitter: 

1. Use feedback from the receiver to adapt the pause time (guard interval) after each symbol 

transmission to reduce inter-symbol interference in the receiver (see Lecture Slide 14-6). 

2. Compensate for impedance mismatches using adaptive predistortion (Midterm 2.3 Fall 

2018) or echo cancellation (Midterm 2.3 Fall 2014).  An impedance mismatch can occur 

between the baseband output and analog/RF front end input, and the mismatch can vary 

with time due to temperature.  Impedance mismatches can also occur between the analog/RF 

front end and the wired channel as well as at each junction in the wired channel.   

3. Nonlinear pre-distorter to improve the linearity of radio transmitter amplifiers.  

(e) When designing an FIR channel equalizer for a communication system using same 

amount of training data and the same filter length, an adaptive least mean-squares 

method should always be used over a least-squares method.  3 points. 

False. From Fall 2017 Midterm 2.4(c), when the training sequence length is short relative to 

the equalizer length, a LS equalizer will perform better because the adaptive LMS equalizer 

will not have enough training data to converge to a meaningful solution.  In homework 7.2 on 

the adaptive LMS method, the training sequence was 250 times the equalizer length.  

False. Another reason is that an adaptive LMS method can have an issue with stability.  

Stability requires a small enough positive value of the step size (learning rate). 

Adaptive LMS method would have much lower complexity than the LS method in this case. 

(f) In a communications system using a rectangular QAM constellation, the fastest and 

most accurate way for the receiver to find the constellation point closest to the 

received symbol amplitude is to use Euclidean distance.  3 points. 

Midterm 2.4(c) 

Fall 2015 

Midterm 2.2(i) 

Spring 2016 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2014.pdf
https://en.wikipedia.org/wiki/Predistortion
https://en.wikipedia.org/wiki/Radio_transmitter
https://en.wikipedia.org/wiki/Amplifier


False.  It is true that using Euclidean distance to find the constellation point closest to a 

received symbol amplitude is the most accurate but not the fastest way.  Euclidean distance 

requires 2 multiplications per constellation point and a square root operation for each of the 

M = 2J points constellation points for a J-bit symbol. (To reduce complexity, we use 

Euclidean distance squared to remove the square root.)  When using rectangular decision 

regions for a rectangular QAM constellation, such as in the left constellation in problem 2.2, 

we can use binary search. Binary search eliminates half of the remaining constellation points 

each step, which requires J comparisons vs. 2 2J multiplications. For rectangular QAM 

constellations, rectangular decision regions match those from using Euclidean distance. 

(g) When the received SNR is – dB, the symbol error rate is 100%.  That is, there is no 

chance that any symbol will be decoded correctly.  3 points   

False. As received SNR goes to – dB, noise swamps the signal.  Receiver can only randomly 

guess the symbol among a constellation of M symbols with an error probability of 
𝑴−𝟏

𝑴
. 


