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Prologue: Lectures 13, 14, 16; JSK Sec. 2.10 & 2.11; JSK Ch. 8, 11, 12; Lab #5; WWM Ch. 17; HW 5.1,
6.1, 6.2, 7.3; In-Lecture Assignment #3 and #4; Midterm 2.4 F17 & 2.4 F18; Haykin Ch. 14; Handout M

Problem 2.1. Baseband PAM System. 24 points.
. . . ) PAM System Parameters
Consider a baseband pulse amplitude modulation (PAM) system with _ _
the parameters on the right. 2d  constellation spacing
fsym Symbol rate
The PAM system does not have A/D or D/A converters. g(t) pulse shape
The problem focuses on the following part of the baseband PAM system: | h(t) matched filter impulse
Tx  Channel Rx ﬂ?SpOHSE
J  bits/symbol
F40) XO | gy [P0 < I Tgm) k  constant
T, M levels, i.e. M =2
Pulse Matched n  symbol lnde_x _
shape w(t) filter N, symbol periods in g(t)
. . ) i ) Tsym Symbol time
where w(t) is a Gaussian random signal with zero mean and variance c°.

Assume the receiver is synchronized with the transmitter in parts (a), (b) and (c).
(a) Using the PAM System Parameters, give a formula for h(t) that maximizes the SNR at the

estimated symbol amplitude y(Tsym)? 4 points. Lecture
The optimal matched filter, per lecture slide 14-15, maximizes the SNR at the estimated Slide
symbol amplitude y(Tsm) which in turn minimizes the symbol error probability because it is 14-14

a monotonically decreasing function vs. SNR. The optimal matched filter impulse response is
h(t) =k g*(Tsym — t) where K is a real-valued constant (k # 0 in practice).

(b) Using your answer in part (a), plot h(t) when g(t) is the rectangular pulse shown below. 4 points.

4+ g(?) Since g(t) is real-valued, complex conjugation t h@®
] has no effect. g(-t) flips it with respect to the Kk
vertical axis, and g(Tsym — t) delays the flipped
< > version by Tsym and we’re back to where we * T : Lecture
v Tom ¢t started with g(t). Gain Kk is real-valued (k # 0). v o Slide
(c) psing your answer in part (b), plot y(t) assuming there is no noise, N0 14-17
i.e. w(t) = 0. 4 points. p
y(t) = g(t) = h(t) + w(t) = h(t) >
With w(t) = 0, y(t) = g(t) * h(t) . >
Convolution gives a triangular pulse whose peak value Il Tym 2Ty, 1

occurs at the symbol time, T,,,, . Note that k can be negative.

(d) Assume the receiver has an accurate Tsym but needs to find a symbol timing offset t to synchronize
with the transmitter as shown below. Develop an adaptive method to update t in the nth symbol
period using analog continuous-time signal processing; e.g., a differentiator circuit will compute a
derivative of an analog continuous-time signal. Use g(t) and h(t) from part (b)

i.  Give an objective function. 6 points. Tx  Channel Rx

ii.  Give the update for t[n+1] given t[n]. 3 points. 2(1)

iii.  How would you determine the value of the
step size u? 3 points. Pulse

T

sym

Matched
shape w(t) filter

? x(t) h([) y(t) >< y(nTsym+ T)

See next two pages for two different solutions for (d).

Epilogue: PAM, QAM, and many other receivers perform symbol timing recovery (a.k.a. symbol
synchronization) to improve communication performance. Adaptive systems using steepest descent/ascent
methods are possible to implement in analog continuous-time circuits.




Solution #1 for 2.1(d): (A student’s solution is below with additional information in blue):
i.  Give an objective function. 6 points.
Define the error e[n] between what we have and what we would like to have:
e[n] = y[n] — y(Tsym) =y[n] -k Tsym where y[n] = y(n Tsym + T)-
Define the objective function to be used to drive the error to zero:

1
J(eln]) = 5 €[]

ii.  Give the update for t[n+1] given t[n]. 3 points.
Seek to minimize the objective function to drive the error to zero:

d
el 1) =]~ gy el

d
t[n+1] = 7[n] - pe[n] - y[n] = t[n] — pe[n] y'(n Tsym + zn)
dt 7=1[n]
Although not asked, which is why the text is in blue here, here’s the system diagram
with the differentiator and adaptive element to perform the update:

Tx Channel Rx

g(?) x(2) h(?) _ 1) Ky (nTy,,+ dn])

L nT,, +n]
Pulse Matched d
shape w(f) filter ) —?<—' Update

The sampling clock with fixed T, and
adapted delay t[n] feeds both samplers t[n+1]

The approach can be extended to any pulse shape when using e[n] = y[n] — y(Tsym).

iii. How would you determine the value of the step size u? 3 points.

Choose a small positive value by using trial-and-error in simulation:
e A negative value for p would cause the objective function to be minimize which
would lead to minimizing the signal power.
e A value of zero for u means that the update will not change the initial value of .
e A large positive p value will lead to divergence of the adaptive algorithm.



Solution #2 for 2.1(d):

Give an objective function. 6 points.
Seek to maximize the power at the estimated symbol amplitude y(nTsym + 7):
Jy@®) = %yz (t) where y(t) = g(t) * h(t) + w(t) = h(t). In y(t), the noise term

2
n(t) = w(t) * h(t) is a Gaussian random signal with zero mean and variance —

sym

! (Sec. 4.12 Gaussian Processes,

because h(t) is a lowpass filter with bandwidth

sym

Haykin’s Communication Systems) and w(t) is a Gaussian random signal with zero

2
mean and variance o®. Any sample of n(t) is a Gaussian random variable N (0, T" )
sym

o2

Average noise power is regardless of sampling time.

sym

. g5 ()
In y(t), the deterministic signal term 90(0) K22,
go(t) = g(t) = h(t) has its instantaneous KT
sym
power change with the sampling time.
Recall that k can be negative. ) l T, 2Tsy,,: ¢ Tyw 2T,
T.,.t7

sym
Give the update for t[n+1] given t[n]. 3 points.

d
tn+ 1] =t[n]+pu E](y(nTsym+r))] .

d
tin+ 1] =t[n]+u y(nTsym + ‘t[n]) ay(t)]

t=nTsym+t[n]

This update is also represented by the block diagram in solution #1.

A differentiator circuit can be as simple as an RC and or RL circuit where output is
tapped across resistor in the RC circuit or inductor in the RL circuit. The above is for
a general pulse shape and its matched filter. For h(t) in part (b), we can simplify the
derivative of y(t) by using a linear time-invariant (LT1) model for differentiation with
impulse response v(t) per JSK Appendix G.2 Derivatives and Filters:

d
V(O = v(0) * ((®) * x(8) = @(®) * () * x(8) = (8©) = 8(t ~ Tyym)) * x(8) = x() = x(¢ = Toym)

How would you determine the value of the step size u? 3 points.
Same as the answer in solution #1 for 2.1(d)iii on the previous page.


https://en.wikipedia.org/wiki/Differentiator

Prologue: Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P;
Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20

Problem 2.2 QAM Communication Performance. 27 points.
Peak power of

Consider the two 16-QAM constellations below. Constellation spacing is 2d. 34d? at symbol
Qt e i gl ‘/ ampl. 3d + j5d

H Qn : . H
o o|lo o L e Constellation
R s B 188 S A | R S Region Type
4 © o o o L e e o I, Ior Il
2d > 2d |
T @ oo o | T @ @ o
S [ SR § AR Average power
¢ 6 06 0 @ A is average of
| S o o 2d2,10d 2, 18d 2
—| 20 | | | and 34d 2

—| 20 |-
Energy in the pulse shape is 1. Symbol time Tsgm is 1s. The constellation on the left includes the
decision regions with boundaries shown by the in-phase () axis, quadrature (Q) axis and dashed lines.

Each part below is worth 3 points. Please fully justify your answers.

Left Constellation Right Constellation
(a) Peak transmit power 18d 2 34d ?
(b) Average transmit power 10d 2 16d 2

(c) Draw the type I, Il and/or 111 decision regions for the right constellation on top of the right
constellation that will minimize the probability of symbol error using such decision regions.

(d) Number of type | regions 4 0
(e) Number of type Il regions 8 12
(f) Number of type I11 regions 4 4
(9) Probability of symbol error a 9 ,d 11 _d\ 7 ,/d
for additive Gaussian noise 3¢ (E) - ZQ (}) TQ (3) B ZQ (3)
with zero mean & variance c?
(h) Express d/c as a function 10d? 16d>
of the Signal-to-Noise Ratio SNR =—3 SNR =—=
(SNR) in linear units

d SNR d SNR

o 10 o |16

(9) Approach #1: Same number of type 1-3 regions as F2020 2.2 gives same symbol error prob.
Approach #2: Lecture slides 15-12 to 15-14. P(e) =1 — P(c). Letq=Q (g)

P(c) =3 P2(c) +7P3(c) =1 (1 — @) (1 — 29) +; (1 — q)?
_3 2 1 2N 11 7 2 _ _ 1 7 2
P(c)=7(1-3q+29")+;(1-2q+q")=1-—q+_q°andP(e) =1-P(c)=—-q—,q

(i) For the right constellation, will using the type I, 11, and 111 rectangular decision regions lead to
Gray coding for symbols? Either give a Gray coding for the right constellation, or show that it is not
possible. 3 points. Gray coding means that any two symbols in adjacent decision regions can
only differ by one bit. The constellation point at d + jd has five adjacent decision regions, and
hence, we cannot encode each pair to differ by one bit because a 16-QAM symbol only has 4 bits.

Epilogue: The right constellation wouldn’t be used in practice. The right constellation has higher peak
power, average power, and peak-to-average power ratio than the left one. Unlike the left constellation, the
right constellation cannot be Gray coded and its rectangular decision regions do not give the same result as
Euclidean distance. Both constellations have a fast binary search decoding algorithm.




Prologue: Lectures 14-16; JSK Sec. 2.8, 2.10, 3.2, 3.4, 3.6, 5.3, 6.7, 11.5, 11.6; JSK Ch. 16 & App. G; Lab
#6; WWM Ch. 18; HW 3.1, 6.3, 7.3; Midterm #2 Problem 2.1 F14, 2.4 Sp15, 2.3 Sp18, 2.3 Sp19

Problem 2.3. QAM Receiver Architecture Tradeoffs. 28 points.

In this problem, you evaluate tradeoffs in the two M _—=c Carrier| @AM Demodulation i[m) __i[n]
QAM receiver architectures on the right: Detect X
(1) Single analog-to-digital (A/D) converter MO "L o [ éﬁ:ﬂﬁ' 2 cos(o, m)
(2) Two A/D converters, one for the in-phase ] glm) _ gln]
channel and one for the quadrature channel £, Arch #1 X)
In both a_rchitectures, _ Carrier and symbol 2 sin(o, m)
r1(t) is the baseband QAM signal recovery not shown t
i is the in-phase component O e Carrier Arch #2
q is the quadrature component ) .
J bits per symbol (assume J is even) ap [HmL L) Channel | Jypp LT 1]
M constellation points where M = 2’ 1
] 7i(1) cos(2mf;
Please evaluate the following tradeoffs. H(XF —sin((z;r:ftt)) 11
(a) Which architecture consumes less power in BN pylii Channel | |, e | 9™ Iz 4ln]
its A/D converters? How much less? 9 points. Equalizer

In an A/D converter, power consumption is proportional to the sampling rate fs and 28 where
B is the number of bits of amplitude resolution at the A/D output.

Assume the sampling rate is the same for all A/D converters. Difference is in number of bits.

Arch #1: The single A/D converter has to support all possible symbol
amplitudes, so B = J. Power consumption is proportional to 2.

Arch #2: Each A/D converter supports a PAM constellation of J/2 bits, i.e. B > J /2.
Power consumption is proportional to 2 2//2 = 2 (2°57) = 2 (2°5) =2 v2’.

J
- : 2 V2
For minimum number of bits for all converters, Arch #1 consumes — = —— more
22

power. This ratiois {1, 2, 4, 8} for 3 ={2, 4, 6, 8}.
If we use the minimum sampling rates for all A/D converters, Arch #1 will consume another
factor of f‘%W more power than Arch #2. Note that fc > W for sinusoidal modulation.

Arch #1 uses a sampling rate of fs > 2 (fc + W). Here, the baseband PAM bandwidth is
W =% fym (1+a) where (1+a) is the bandwidth expansion factor. For a raised cosine pulse
shape, a is the rollof factor in [0, 1]. For a rectangular pulse, a = 1. See lecture slide 7-10.

Lecture Slides
15-6 to 15-8

Arch #2 uses a sampling rate of fs > 2 W because it is sampling a baseband PAM signal.
Demodulation filters are the analog continuous-time lowpass filters in the A/D converters.

(b) Describe an automatic gain control (AGC) algorithm for architecture #2 including equations. The
algorithm has access to both A/D converter outputs. Give the computational complexity. 6 points.

We modify AGC algorithm for Arch #1 on lecture slide 16-5 for signed 8-bit A/D converters:

C-128, Co, C127 are counts for the number of times -128, 0, or 127, respectively, occurs in last
N/2 samples in the first A/D converter and last N/2 samples in the second A/D converter.

f.108, fo, f127 represent how frequently outputs -128, 0, 127 occur where f; = %

Update gain c(t) every t seconds using c(t) = A c(t—t) where A =1 + 2 fo— f.128 — f127.



Computational complexity (same as that of arch. #1 algorithm)

Substituting f; = =, A = N+ 2¢- —A2—SZ - Computing the numerator takes 3 additions

and 1 left shift by one bit to implement multiplication by two. We would like a floating-
point value for A. Numerator takes integer values between 0 and 2N, inclusive. We could
create a lookup table of 2N+1 entries to store all precomputed floating-point values for A
and use the numerator as index into the lookup table. A is computed every t seconds.

For each sample, we need 6 comparisons to update the 3 counters according to the values
of i;m] and g[m]. We update the 3 counters based on values of i;\[m-N/2] and g:[m-N/2]
that will be discarded from the circular buffers of i;[m] and q.[m] values. (For reduced
storage, we would store the values of the changes to the counters for each sample in a
circular buffers instead of the ir[m] and g:[m] values themselves.) Assume N is even.

(c) Describe a carrier detection algorithm for architecture #2 including equations. The algorithm has
access to both A/D converter outputs. Give the computational complexity. 6 points.

We modify the carrier detection algorithm for Arch #1 on lecture slide 16-9 as follows:

Let x[m] = i2[m] + q2[m] be the instantaneous power of the in-phase and quadrature
baseband PAM channels combined. (We assume the in-phase and quadrature baseband
PAM channels are orthogonal, i.e. 90 degrees or 270 degrees out of phase. In practice, the
two channels are close enough to orthogonal for the purposes of a carrier detection
algorithm. The loss of orthogonality is called 1Q imbalance.)

Compute average power using first-order IR filter p[m] = ¢ p[m — 1] + (1 — ¢) x[m]
where 0 < ¢ <1. The pole location is c. The closer c is to 1, the more selective the filter
(i.e. the more narrow the passband and the larger the stopband attenuation in dB).

e If there is no transmission being received, assume there is transmission Lecture
if p[m] is larger than a large threshold. Slide 16-9

e If there is transmission being received, assume that the transmission
has stopped if p[m] is smaller than a small threshold.

Computational complexity (2x of that of arch #1 algorithm):

x[m] = i2[m] + q?*[m] takes 2 multiplications and 1 addition per sample.

plm] = ¢ p[m — 1] + (1 — ¢) x[m] takes 2 multiplications and 1 addition per sample.

Total run-time computational complexity: 4 multiplications and 2 additions per sample

plus one threshold operation applied periodically.

(d) Which architecture would you advocate using? Why? Describe the tradeoffs considered. 7 points.
Arch #1 A/D converter consumes more power than the combined power consumption of the

J
A/D converters in Arch #2 by a factor of (h%W) <\/%>

In comparing baseband discrete-time signal processing, Arch #1 has one channel equalizer as
well as pointwise multiplication and generation of cosine and sine signals. Arch #2 has two
channel equalizers, but this is offset because Arch #2 runs at less than half the sampling rate.

Arch #1 advantages: fewer components.

Arch #2 advantages: lower power consumption in the A/D conversion (which dominates
power consumption in an analog/RF frontend) and lower baseband discrete-time complexity.



Prologue: These questions are from the second half of the semester. References are given with each part.

Problem 2.4. Potpourri. 21 points.

Please determine whether the following claims are true or false and support each answer
with a brief justification. A true or false answer without any justification will not earn any
points.

(a) PAM and QAM transmission using the same constellation size and symbol rate will always have

the same symbol error rate when both receivers are operating at the same received SNR 3 points.

False. For same symbol rate, the symbol error rate (symbol ¢ e ‘ |
error probability) for 4-QAM is much lower than that of 4- ‘
PAM for received SNR greater than 0 dB. The plot on the M |
right of symbol error rate vs. SNR in dB is from Handout P: ~ «| ==

Communication Performance of PAM vs. QAM Handout. As |

SNR -> —0 dB, curves converge to ¥; see part (g).

(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a

communication system. In a communication system, the pulse shape should be zero at

non-zero integer multiples of the symbol duration = SOt = R e e
and have its maximum value at the origin. 3 points. \ y \

. L . " =
First Claim is True. In a PAM transmitter, the pulse -f !

shaping filter determines the baseband bandwidth, which is %
fsym (1+a) where (1+a) is the bandwidth expansion factor over the ideal lowpass filter. After
upconversion in the analog/RF front end, the PAM transmission bandwidth would be fsym

(1+a) as shown above (the plot is from Spring 2020 Midterm 2.1). For a QAM transmitter, the
baseband signal in the frequency domain would be centered at frequency fc with bandwidth

fsym (1+a) as shown above, and the transmission bandwidth after upconversion in the

analog/RF front end would be 2 f; + fsym (1+a1).

Second Claim is True. The pulse shape is used as the impulse response of an Inputto Upeampler by 4
FIR filter that interpolates the output of upsampling by L, where L is the T I ?
number of samples in a symbol period. For a non-causal pulse shape 0 ) o
centered at the origin, the pulse shape should be zero at non-zero integer Output of Upsampler by 4
multiples of L so that the symbol amplitudes pass through unchanged. That t I

is, the FIR filter implements convolution; as the impulse response (pulse "’
shape) is flipped and slid across the input signal, the zero crossings at a non-

0123456738

zero integer multiples of the symbol duration (L samples) ensure that the Quiputof IR Filte
symbol amplitudes remain unchanged. See the plot on the right for L =4 [ T I I I I T T,
from Lecture Slide 13-8. 012345678

. . . FIR fills in zero values
(c) The LTI components of wired and wireless channels have impulse K

responses of infinite duration, and each can be modeled as an FIR filter. Wired Midterm 2.4(a)
channel impulse responses do not change over time, whereas wireless channel Fall 2015

impulse responses change over time. 3 points.


http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/PAMvsQAMHandout.pdf

First claim is true. Wired channels have impulse responses that resemble RLC circuits.
From the transmitter to receiver in wireless channels, there can be a direct path, paths
involving one reflection (bounce), paths involving two reflections (bounces), etc. We can
truncate the impulse responses to model the impulse responses as FIR. See Lecture 12 on
Wireless Impairments, slides 12-5 to 12-8.

Second claim is false. Impulse responses in wired channels change with temperature because
resistance, capacitance and inductance depend on temperature across the wire.

(d) A receiver in a digital communication system employs a variety of adaptive

subsystems, including automatic gain control, carrier recovery, and symbol timing
recovery. A transmitter in a digital communication system does not employ any
adaptive systems. 3 points.

First claim is true. Adaptive methods based on steepest descent for carrier recovery and
symbol timing recovery are subjects of homework problems 6.1 and 6.2. The JSK textbook
discusses adaptive methods automatic gain control (pp. 120-128), carrier recovery (pp. 198-
220) and symbol timing recovery (pp. 250-269), with many based on steepest descent.

Second claim is false. Several examples of adaptive systems in the baseband transmitter:
1. Use feedback from the receiver to adapt the pause time (guard interval) after each symbol
transmission to reduce inter-symbol interference in the receiver (see Lecture Slide 14-6).

2. Compensate for impedance mismatches using adaptive predistortion (Midterm 2.3 Fall
2018) or echo cancellation (Midterm 2.3 Fall 2014). An impedance mismatch can occur
between the baseband output and analog/RF front end input, and the mismatch can vary
with time due to temperature. Impedance mismatches can also occur between the analog/RF
front end and the wired channel as well as at each junction in the wired channel.

3. Nonlinear pre-distorter to improve the linearity of radio transmitter amplifiers.

(e) When designing an FIR channel equalizer for a communication system using same

U

amount of training data and the same filter length, an adaptive least mean-squares) siqiorm 2 4(c)
method should always be used over a least-squares method. 3 points. Fall 2015

False. From Fall 2017 Midterm 2.4(c), when the training sequence length is short relative to
the equalizer length, a LS equalizer will perform better because the adaptive LMS equalizer
will not have enough training data to converge to a meaningful solution. In homework 7.2 on
the adaptive LMS method, the training sequence was 250 times the equalizer length.

False. Another reason is that an adaptive LMS method can have an issue with stability.
Stability requires a small enough positive value of the step size (learning rate).

Adaptive LMS method would have much lower complexity than the LS method in this case.
In a communications system using a rectangular QAM constellation, the fastest and
most accurate way for the receiver to find the constellation point closest to the Midterm 2.2(i)

received symbol amplitude is to use Euclidean distance. 3 points. Spring 2016


http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2018.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2014.pdf
https://en.wikipedia.org/wiki/Predistortion
https://en.wikipedia.org/wiki/Radio_transmitter
https://en.wikipedia.org/wiki/Amplifier

False. Itis true that using Euclidean distance to find the constellation point closest to a
received symbol amplitude is the most accurate but not the fastest way. Euclidean distance
requires 2 multiplications per constellation point and a square root operation for each of the
M = 27 points constellation points for a J-bit symbol. (To reduce complexity, we use
Euclidean distance squared to remove the square root.) When using rectangular decision
regions for a rectangular QAM constellation, such as in the left constellation in problem 2.2,
we can use binary search. Binary search eliminates half of the remaining constellation points
each step, which requires J comparisons vs. 2 2 multiplications. For rectangular QAM
constellations, rectangular decision regions match those from using Euclidean distance.

(9) When the received SNR is —o dB, the symbol error rate is 100%. That is, there is no
chance that any symbol will be decoded correctly. 3 points

False. As received SNR goes to —o dB, noise swamps the signal. Receiver can only randomly
guess the symbol among a constellation of M symbols with an error probability of %



