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 Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 
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 Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

 Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

 Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except your instructor, Prof. Evans, 

and that you did not provide help, directly or indirectly, to another student taking this exam. 
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Your 
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Peter Bradley 1 19  Changing Sampling Rates 

Michelle Zauner 2 33  QAM Communication Performance 

Craig Hendrix 3 24  Adaptive Spatial Filter 

Deven Craige 4 24  Potpourri 

 Total 100   
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Problem 2.1. Changing Sampling Rates.  19 points. 

Consider the two systems to change the sampling rate: 

 System A consists of linear time-invariant (LTI) 

filtering followed by downsampling by L. 

 System B consists of upsampling by L followed 

by LTI filtering. 

(a) Give a formula for 𝑓2 in terms of 𝑓1.  2 points.  

𝒇𝟐 =
𝟏

𝑳
𝒇𝟏 

(b) Give a formula for 𝑓4 in terms of 𝑓3.  2 points. 

𝒇𝟒 = 𝑳 𝒇𝟑 

(c) Assuming 𝐿 = 2, draw 𝑦𝑎[𝑛] corresponding to the input 𝑣𝑎[𝑚] shown below.  4 points. 

 
 

(d) Assuming that 𝐿 = 2, draw 𝑣𝑏[𝑚] corresponding to the input 𝑥𝑏[𝑛] shown below.  4 points. 

 
 

(e) Assume the filter in System B is a finite impulse response (FIR) filter with N coefficients. 

1. How many multiplication operations per second does System B use in the block diagram 

above?  3 points.  Upsampling does not require any multiplications.  An FIR filter with 

N coefficients requires N multiplications to compute one output sample in response to 

an input sample.  FIR filter processes 𝒇𝟒 samples per second.  Total:  𝑵 𝒇𝟒 mults/sec. 

2. How many multiplication operations per second would System B use if implemented as a 

polyphase filter bank?  4 points.  A polyphase filterbank uses a bank of L polyphase FIR 

filters, each with N/L coefficients, followed by a commutator to take the L parallel 

outputs and put them in sequential order.  Each polyphase FIR filter runs at the 

lower rate, 𝒇𝟑. Total: 𝑵 𝒇𝟑 mults/sec.  Savings in mults/sec by a factor of L because 

𝒇𝟒 = 𝑳 𝒇𝟑 . 

Prologue: Lectures 13 & 16; JSK Sec. 2.10; JSK Ch. 8 & 11; Lab 5; HW 2.2, 4.2, 4.3, 5.2, 6.1 & 6.2; 

Midterm 2.1 problems: F17, Sp18, F18, Sp21 & F21 

 

Lecture 

Slides 13-8 

and 26-7; 

HW 2.2(e) 

Lecture 

Slide 26-9; 

HW 2.2(d) 

Lecture Slides 13-9, 13-14 to 

13-16, and 26-8; HW 5.3 



 

Problem 2.2  QAM Communication Performance. 33 points.  

Consider the two 8-QAM constellations below.  Constellation spacing is 2d. 

 

 

 

 

 

 

Energy in the pulse shape is 1.  Symbol time Tsym is 1s. 

Each part below is worth 3 points.  Please fully justify your answers. 

 Left Constellation Right Constellation 

(a) Peak transmit power 10d 2 8d 2 

(b) Average transmit power 6d 2 𝟒(𝟖𝒅𝟐) + 𝟐(𝟒𝒅𝟐) + 𝟐(𝒅𝟐)

𝟖
= 𝟓. 𝟐𝟓𝒅𝟐 

(c) Peak-to-average power ratio 10𝑑2

6𝑑2
=

5

3
≈ 1.67 

𝟖𝒅𝟐

𝟓. 𝟐𝟓𝒅𝟐
=

𝟑𝟐

𝟐𝟏
≈ 𝟏. 𝟓𝟐 

(d) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(e) Number of type I QAM regions 0 0 

(f) Number of type II QAM regions 4 4 

(g) Number of type III QAM regions 4 4 

(h) Probability of symbol error for 

additive Gaussian noise with zero 

mean & variance 2. 

𝑃𝑒 =
5

2
𝑄 (

𝑑

𝜎
) −

3

2
𝑄2 (

𝑑

𝜎
) 

Same as left constellation 

due to same number of 

type I, II and III regions 

(i) Express the argument of the Q 

function as a function of the Signal-

to-Noise Ratio (SNR) in linear units 

SNR =
6𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

6
 

𝐒𝐍𝐑 =
𝟓. 𝟐𝟓𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟓. 𝟐𝟓
 

 

(j) Give one advantage of the left constellation vs. the right constellation. 3 points. 

 Gray coding minimizes the number of bit errors when there is a symbol error.  The bit 

pattern for each symbol only differs in one bit with that of the nearest neighbor.  Left 

constellation can be gray coded as shown above; right constellation cannot be gray coded 

because we only have two bits of freedom at each constellation point and the constellation 

points at locations d and -d have four nearest neighbors. 

 Binary search fast algorithm can be used for decoding the received symbol amplitude by 

finding the nearest constellation point.  Each iteration rules out half the points with a single 

Prologue: Lectures 13-16; JSK Ch. 16; Lab 5 & 6; HW 4.2, 4.3, 5.2, 6.3 & 7.3; Handout P PAM vs. QAM; 

Midterm 2.2 problems: F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20, Sp21 & F21 

 



real-valued comparison. Binary search achieves same accuracy as selecting the constellation 

point that is closest in Euclidean distance to the received symbol amplitude.  For the right 

constellation, there is no vertical or horizontal line through the complex plane that will 

eliminate half the points; however, decoding the received symbol constellation using the 

decision regions will be as accurate as using Euclidean distance. 

 Rectangular constellation has 4-PAM (QPSK) in the in-phase component and 2-PAM (BPSK) 

in the quadrature component. The QAM receiver separates into a 4-PAM receiver in the in-

phase direction and 2-PAM receiver in the quadrature direction, which can simplify the 

design.  For example, one could apply a single Costas Loop to only the in-phase component to 

determine the phase offset for the baseband QAM carrier, instead of having to run eight 

Costas loops in parallel per homework problem 7.3.  The right constellation is not a 

rectangular constellation. 

(k) Give one advantage of the right constellation vs. the left constellation.  3 points. 

 Lower peak transmit power for same value of d 

 Lower average transmit power for same value of d 

 Lower average peak-to-average power ratio which makes it easier to design the power 

amplifier for the analog/RF chains in the transmitter and receiver 

 Lower symbol error rate vs. SNR.  The Q function is a non-negative monotonically decreasing 

function of its non-negative argument.  The probability of error expressions are identical in 

terms of  
𝒅

𝝈
.  Let SNR = 6 in linear units.  The value of 

𝒅

𝝈
 is 1 for the left constellation and 1.2 

for the right constellation, which means the right constellation has lower symbol error rate.  



Problem 2.3  Adaptive Spatial Filter. 24 points.  

A single sound source is recorded by several microphones 

simultaneously as shown on the right. 

The microphones are arranged in a line and separated  

by distance 𝑑.  Sound arrives at an unknown angle 𝜃. 

Sound arrives at the ith microphone with a different 

delay 𝑡𝑖 based on the distance to the source.  The source 

is far enough away for the propagation to be a plane wave. 

The signal recorded by the ith microphone 𝑟𝑖(𝑡) is delayed 

by 𝜏 seconds, and all the signals are added together before 

being sampled by an analog-to-digital converter: 

We would like to design an adaptive spatial filter that   

amplifies a signal located at an unknown angle 𝜃 by  

adapting the delays 𝜏1,  𝜏2, … , 𝜏𝑁. 

A known training signal 𝑥[𝑛] is sent by the source so that we can find the best values for 𝜏1,  𝜏2, … , 𝜏𝑁. 

Hence 𝑟𝑖(𝑡) = 𝑥(𝑡 − 𝑡𝑖) where 𝑥(𝑡) is the continuous-time version of the training signal 𝑥[𝑛]. 

(a) Training.  What training signal 𝑥[𝑛] would you send?  Why?  Describe its parameters.  6 points. 

We want x[n] to be easy to generate at the receiver, have good correlation properties and 

contain all discrete-time frequencies because the channel will attenuate/reject some 

frequencies. After digital-to-analog conversion (DAC) of x[n] at rate 𝒇𝒔, continuous-time 

signal 𝒙(𝒕) would have all frequencies –½ fs to ½ fs. 

Option #1:  Long maximal-length pseudo-noise sequence.  Length is 2r – 1 bits where r is the 

number of states in the PN generator.  Map 1 bit to +1 and 0 bit to -1 in amplitude.  As an 

audio signal, a PN sequence sounds like noise. 

Option #2: Chirp signal that sweeps from 0 Hz to 20 kHz (upper end of audible range) over 0 

to 𝒕𝒎𝒂𝒙 seconds.  𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅 𝜸 𝒕𝟐) where 𝜸 =
𝟏𝟎 𝐤𝐇𝐳

𝒕𝒎𝒂𝒙
 .  For the DAC, use 𝒇𝒔 > 𝟒𝟒 𝐤𝐇𝐳 .  

Since chirp sounds can be startling, we could use low-volume chirps, or chirps in 15-20 kHz 

range, where human hearing is less sensitive. 

(b) Propagation Delay.  Consider the signal received by the ith microphone 𝑟𝑖(𝑡).  Propose and 

explain an algorithm to find the delay 𝑡𝑖  from the source to the ith microphone.  6 points. 

Correlate output of ith microphone 𝒓𝒊(𝒕) against the training sequence, and the location of 

the first peak will provide an estimate of the delay 𝒕𝒊 from the source to the ith microphone. 

This method works because the correlation function provides a measure of similarity 

between 𝒓𝒊(𝒕) and delayed versions of 𝒙(𝒕).  We had seen this in HW 4.2, 4.3, and 5.2; lab #4 

on PN sequences; and labs 5-6 on matched (correlation) filtering. 

With the estimates of the 𝒕𝒊 values, we can determine the best 𝝉𝒊 values as follows without the 

need for an adaptive algorithm: 

𝒕𝒎𝒂𝒙 = 𝐦𝐚𝐱( [ 𝒕𝟏    𝒕𝟐     ⋯    𝒕𝑵] ) 

𝝉𝒊 = 𝒕𝒎𝒂𝒙 − 𝒕𝒊   𝐟𝐨𝐫 𝒊 = 𝟏, … , 𝑵 

Prologue: Lectures 12 & 13; JSK Sec. 2.10 & 2.12; JSK Sec. 3.7; JSK Ch. 8 & 11; 

Labs 5 & 6; HW 4.2, 4.3, 5.1, 5.2, 6.1, 6.2, 7.1, 7.2 & 7.3 

 



This will allow all the versions of the received training signal to be aligned in time and add 

constructively.  This assumes the sound source is not moving.  One of the advantages of an 

adaptive algorithm is to be able to track a moving sound source.  We can use the above 

calculation as the initial values for 𝝉𝒊 for the adaptive algorithm. 

(c) Adaptive Spatial Filter.  Develop a discrete-time adaptive algorithm to apply to 𝑦[𝑛] to determine 

the best set of delays 

𝜏 = [ 𝜏1    𝜏2     ⋯    𝜏𝑁] 

for the microphone array to amplify the sound coming from the source at an unknown angle 𝜃. 

1. Give an objective function and explain why you have chosen it.  3 points. 

𝑱( 𝒆[𝒏] ) =  
𝟏

𝟐
 𝒆𝟐[𝒏] where 𝒆[𝒏] = 𝒚[𝒏] − 𝒙[𝒏 − 𝒏𝟎] and 𝒏𝟎 is a constant average delay. 

We can choose 𝒏𝟎 = 𝟎 for simplicity.  Driving 𝒆𝟐[𝒏] to zero will drive 𝒆[𝒏] to zero. 

2. Give an adaptive steepest descent/ascent algorithm for 𝜏[𝑖 + 1] in terms of 𝜏[𝑖].  6 points. 

The adaptive steepest descent algorithm to minimize 𝑱( 𝒆[𝒏] ) is 

�⃑⃑�[𝒏 + 𝟏] = �⃑⃑�[𝒏] −  𝝁 
𝒅

𝒅�⃑⃑�
 𝑱( 𝒆[𝒏] )]

�⃑⃑�=�⃑⃑�[𝒏]
= �⃑⃑�[𝒏] −  𝝁 𝒆[𝒏] 

𝒅

𝒅�⃑⃑�
 𝒚[𝒏]]

�⃑⃑�=�⃑⃑�[𝒏]
 

since 𝒙[𝒏] does not depend on �⃑⃑�.  This would be a sufficient answer on the exam. 

To keep working the problem, 

𝒚(𝒕) = ∑ 𝒓𝒊(𝒕 − 𝝉𝒊) =

𝑵

𝒊=𝟏

∑ 𝒙(𝒕 − 𝒕𝒊 − 𝝉𝒊)

𝑵

𝒊=𝟏

 

𝒚[𝒏] = 𝒚(𝒏 𝑻𝒔) = ∑ 𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)

𝑵

𝒊=𝟏

 

𝒅

𝒅𝝉𝒊
 𝒚[𝒏] =

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)   

At this point, we have not included knowledge of the microphone array geometry or the 

training signal.  If a chirp training signal is being used, then 𝒙(𝒕) = 𝐜𝐨𝐬(𝟐𝝅 𝜸 𝒕𝟐) and 

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) =

𝒅

𝒅𝝉𝒊
𝐜𝐨𝐬(𝟐𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)𝟐) 

𝒅

𝒅𝝉𝒊
𝒙(𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) =  𝟒𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊) 𝐬𝐢𝐧(𝟐𝝅 𝜸 (𝒏 𝑻𝒔 − 𝒕𝒊 − 𝝉𝒊)𝟐)  

3. What values of the step size would you use?  Why?  3 points. 

We would like to small positive values of the step size 𝝁 such as 0.01 to ensure 

convergence of the algorithm.  Using 𝝁 = 𝟎 would not allow the iterative algorithm to 

update.  Using a negative 𝝁 would convert the steepest descent algorithm to minimize 

𝒆[𝒏] into a steepest ascent algorithm to maximize 𝒆[𝒏].  A large positive value would 

cause the steepest descent algorithm to diverge. 

  



Problem 2.4. Potpourri.  24 points. 

(a) Consider 16-QAM system transmitting at a 1200 bps (bits per second) using a 12-sample discrete-

time raised cosine pulse shaping filter.  What are the possible sampling rates in Hz?  12 points. 

Bit rate is 𝑱 𝒇𝒔𝒚𝒎 where 𝑱 is number of bits/symbol and 𝒇𝒔𝒚𝒎 is symbol rate in symbols/s or 

Hz.  With 𝑱 = 𝟒 bits/symbol due to 16-level QAM and a bit rate of 1200 bps, 𝒇𝒔𝒚𝒎 =  𝟑𝟎𝟎 𝐇𝐳. 

Pulse shape has 𝑵 = 𝑵𝒈 𝑳 samples where 𝑵𝒈 is number of symbol periods in the pulse shape 

and 𝑳 is number of samples in a symbol period. With 𝑵 = 𝟏𝟐 given in the question, possible 

factorizations are 𝑳 = 𝟏 and 𝑵𝒈  = 𝟏𝟐 ; 𝑳 = 𝟐 and 𝑵𝒈  = 𝟔 ; 𝑳 = 𝟑 and 𝑵𝒈  = 𝟒 ; 𝑳 = 𝟒 and 

𝑵𝒈  = 𝟑 ; 𝑳 = 𝟔 and 𝑵𝒈  = 𝟐 ; 𝑳 = 𝟏𝟐 and 𝑵𝒈  = 𝟏. 

With the sampling rate 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎, the possible sampling 

rates are 300, 600, 900, 1200, 1800, and 3600 Hz. 

(b) Consider a wireless communication system that uses two transmit antennas and two receive 

antennas.  This allows two signals 𝑥1[𝑛] and 𝑥2[𝑛] to be sent at the same time and over the same 

frequency band as shown below:  12 points 

 
Each antenna at the receiver receives both transmitted signals.   

The communication channel has a complex-valued scalar gain between the ith transmit antenna 

and jth receive antenna.  No other impairments are being modeled.   

The received signal is 

[
𝑦1

𝑦2
] = [

ℎ11 ℎ12

ℎ21 ℎ22
] [

𝑥1

𝑥2
] 

which can be written as 

�⃑� = 𝑯 �⃑� 

In the receiver, assume 𝑯 is known. 

Find two possible values for matrix 𝑮 in terms of 𝑯 that can allow us to estimate �⃑� from �⃑� via  

�⃑�𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑮 �⃑� 

Hints:  One way could equalize (invert) the channel.  Other could use a matched filtering approach. 

We want to find �⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 = 𝑮 �⃑⃑⃑� =  𝑮 𝑯 �⃑⃑⃑� so that we can recover �⃑⃑⃑� from �⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 .  

We can equalize (invert) the channel by using 𝑮 = 𝑯−𝟏 which would give 

�⃑⃑⃑�𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 = 𝑮 𝑯 �⃑⃑⃑� = 𝑯−𝟏 𝑯 �⃑⃑⃑� = �⃑⃑⃑� .  The closed-form formula for 𝑯−𝟏 is  

𝑯−𝟏 =
𝟏

𝒅𝒆𝒕(𝑯)
[

𝒉𝟐𝟐 −𝒉𝟏𝟐

−𝒉𝟐𝟏 𝒉𝟏𝟏
] 

In general, 𝑮 =  𝜶 𝑯−𝟏 for any non-zero scalar 𝜶. 

The idea of a matched filter is phase reversal.  For example, in pulse amplitude modulation, 

the matched filter impulse response is 𝒉[𝒎] =  𝒌 𝒈∗[𝑳 − 𝒎] where 𝒈[𝒎] is the pulse shape.  

For this problem, we let 𝑮 = 𝑯∗ where 𝑯∗ means the conjugate transpose of 𝑯∗: 

Figure from Lars Reichardt, 

Juan Pontes, Yoke Leen Sit, 
and Thomas Zwick, “Antenna 
Optimization for Time-
Variant MIMO Systems”, 
EuCap, 2011. 
 

𝑯∗ = [
𝒉𝟏𝟏

∗ 𝒉𝟐𝟏
∗

𝒉𝟏𝟐
∗ 𝒉𝟐𝟐

∗ ]  𝐬𝐨 𝐭𝐡𝐚𝐭  𝑯∗ 𝑯 = [
𝒉𝟏𝟏

𝟐 + 𝒉𝟐𝟏
𝟐 𝒉𝟏𝟏

∗ 𝒉𝟏𝟐 + 𝒉𝟐𝟏
∗ 𝒉𝟐𝟐

𝒉𝟏𝟐
∗ 𝒉𝟏𝟏 + 𝒉𝟐𝟐

∗ 𝒉𝟐𝟏 𝒉𝟏𝟐
𝟐 + 𝒉𝟐𝟐

𝟐
]   

Lecture slide 13-3 for bit rate; slides 13-9 

to 13-16 for pulse shape length; slide 13-7 

for sampling rate; Labs 5 & 6 

Lecture 12; JSK Sec. 2.1, 

2.10 & 2.12; JSK Ch. 8 & 11; 

Labs 5 & 6; HW 4.2, 4.3, 5.2, 

5.3, 6.1, 6.2, 7.1, 7.2 & 7.3   
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