EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

% In-Lecture Assignment #1 on Sep. 13, 2023. Based on homework problem 1.2.
% Key takeaways: (1) Chirp signals are useful in localization, testing and training

% because they linearly sweep a range of frequencies, and (2) Spectrograms analyze
% a signal in the time and frequency domains simultaneously so that frequencies can
% be localized in time. Spectrogram trades off frequency resolution for time resolution.

% Chirp Signals: Please see slides 1-14 to 1-16 of CommonSignalsinMatlab.pptx.

% Spectrograms: Please see slides 1-17 to 1-20 of CommonSignalsinMatlab.pptx.

% Introduction: A chirp signal is a sinusoid whose principal frequency

% increases (or decreases) over time. A chirp signal has the form

% c(t) =cos(O(t)) where Ht)=27n (fo+ 0.5 fstept) t =2 T fo t + T fstep t

% The principal frequency in Hz is fo when ¢ = 0 and then changes over time at a
% rate of fstep in units of Hz/s. The principal frequency of a sinusoid at a given

% point in time is called the instantaneous frequency, and it is defined as

% d@(t) /dtin units of rad/s. dO(t) /dt =2 fo+ 2 7 fstep t = 2 7 (fo + fstep t).

% We divide d@ (t) / dt by 2r to obtain instantaneous frequency in Hz of fo + fstep t.

% (a) Generate a chirp signal that lasts 10s with fo = 20 Hz and fstep = 420 Hz/s.
% Use sampling rate fsof 44100 Hz. The chirp will sweep through the principal

% frequencies of the keys on an 88-key piano. Here’s Matlab code to get started.
%%% Generate a chirp signal with frequency increasing

%%% from f0 to (f0 + fstep time) over time seconds

time = 10;

f0 = 20;

fstep = 420;

fs = 44100;

Ts =1 / fs;

t =0 : Ts : time;

%$%% Add code here to define the chirp signal y = cos(angle(t))
angle = 2*pi*f0*t + pi*fstep*t.”2;

= cos (angle);

% (b) Play the chirp signal as an audio signal. Describe what you hear.

% I hear a rising pitch over time. Sounds like a slide whistle or a tsunami warning siren

% (rb.gy/18exl). Note: Some laptop playback systems cannot play frequencies below 200 Hz.

sound (y, fs);
pause (time+1) ;

% (c) Plot the spectrogram of the chirp signal and describe the visual representation.
% Spectrogram shows a yellow line that represents the principal frequency in the chirp
% signal. The line goes from 20 Hz at time Os to 4220 Hz at time 10s. The spectrogram
% plot is on the next page. See Appendix A for explanation of spectrogram arguments.

figure;
blockSize = 256; overlap = 128;
spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');

title('(c) Spectrogram with block size 256 and overlap 128'");

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
https://rb.gy/18exl

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

% (d) Give the code for the spectrogram that would improve the

% frequency resolution by a factor of two vs. part (c).

% The frequency resolution is what is possible from observing a signal for a block of

% N samples which lasts for N Ts seconds. From homework problem 0.1, the frequency
% frequency resolution in Hz is the inverse of the observation timeor 1 /(N Ts) = fs / N.
% Increase N to decrease (improve) frequency resolution.

% The yellow line in the spectrogram with N doubled is half the width vs. part (c).

% Please see the derivation of frequency resolution in Appendix B.

figure;
blockSize = 2*256; overlap = 128;
spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');

title (' (d) Spectrogram with block size 512 and overlap 256'");

% (e) Give the code for the spectrogram that would improve the time resolution,

% i.e. localizing frequency components in time, by a factor of two vs. part (c).

% The time resolution means the ability to identify when a frequency component occurs

% in time. In a block of N samples, we do not know when frequency components occur, and
% hence, our time resolution in seconds is N Ts. We improve time resolution by reducing N.

figure;
blockSize = 256/2; overlap = blockSize/2;
spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
title('(e) Spectrogram with block size 128 and overlap 64');
(C) (c) Spectrogram with block size 256 and overlap 128 (e) {8} Spectogrin With blook sze 126 and ovariep 64
2 20 -40
15 . » a
g wi g -1
7 g -y g
: » 100 E § * e E
£ "3 . :
120 B0
5 5
0 / D f
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time (s) Time (s)
(d) (d) Spectrogram with block size 512 and overlap 256

3

]

8

Frequency (kHz)
3

In all three spectrogram plots, the extent
- of the horizontal time axis is the same
: (from 0 to 10s) and the extent of the
H vertical frequency axis is the same (from
E 0 to ¥ fs where fs = 44100 Hz). We have
o'y chosen fs to satisfy the sampling theorem
fs> 2 fmax where fmax is the maximum
. frequency of interest (4220 Hz) and to
/ be a standard audio sampling rate.

Time (s)

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

Appendix A: Arguments to the MATLAB spectrogram function by Dan Jacobellis

In HW 1.2 and the in-lecture assignment, a spectrogram is used to visualize the chirp signal.

There are 10 possible input arguments for the spectrogram function in MATLAB & which often leads to confusion.

Here are a few notes about using the spectrogram function in MATLAB.

1. If the output argument is saved, no plot will be generated.
s = spectrogram(...) saves the complex-valued DFT coefficients to the variable s but does not create a plot.
figure; spectrogram(...) creates a new window with the plot of the spectrogram.

2. The window parameter has two different uses

If the window parameter is an integer, then MATLAB will construct a Hamming window & of that length, and multiply each frame of data
by the hamming window before taking the DFT. This is the suggested mode to use the function, i.e.

figure; spectrogram(x, 2A10...)

3. The relationship between time and frequency resolutions is easiest to see when no overlap is used.
Consider the following two spectrograms. Suppose the signal length is N = 220 = 1048576
Spectrogram 1:

window = 2/10;

noverlap = @;

nfft = 2A10;

figure; spectrogram(x,window,noverlap,nfft)

Spectrogram 2:

window = 2A12;
noverlap = @;
nfft = 2A12;

figure; spectrogram(x,window,noverlap,nfft)

The first spectrogram will have (220 / 219) = 1024 divisions on the time axis and 21°/2 = 512 divisions on the frequency axis (the division
by two is because the negative frequencies are discarded). It will result in an image that is 1024 x 512 pixels.

The first spectrogram will have (22° / 212) = 256 divisions on the time axis and 212/2 = 2048 divisions on the frequency axis. It will result
in an image that is 256 x 2048 pixels.

Both images have the same number of pixels total, but there is a tradeoff in time and frequency resolution.

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

Appendix B: Derivation of Frequency Resolution

Frequency resolution of Af Hz means two frequency components spaced Af Hz apart can each
be clearly identified by an algorithm, e.g. well separated in a plot of the frequency domain.

We’ll illustrate the concept of frequency resolution by revisiting homework problem 0.1.

Homework 0.1 concerned a sine signal c(t) lasting from Os to 1s. The mathematical expression is
a two-sided sine signal multiplied by a rectangular pulse that lasts from Os to 1s:

c(t) = sin(2 = fc t) rect(t — ¥2)
The continuous-time Fourier transform of r(t) = rect(t — %) is a sinc function times a phase shift
R(f) = F { rect (t-3) } = sinc(f) e/ where sinc(x) = % and

Cc(f) = %e‘f”(f”c)sinc(f +f.) — ée‘f"(f‘fc)sinc(f — f..) due to the modulation property.

Below are the plots of |R(f)| on the left and |C(f)| for f, = 4 Hz on the right:

e

Rl . o

For a signal lasting Os to 1s and containing sinusoids at frequencies 3 Hz and 4 Hz,
C2(t) = sin(2 & fo t) rect(t — ¥%2) + sin(2 &t f1 t) rect(t — %)
let’s see if we can resolve the two frequencies. We’re looking for two peaks in the frequency

domain plot that are well separated at 3 Hz and 4 Hz. Between the peaks, the magnitude
response should not be higher than the “sidelobes” at frequencies higher than 1 Hz in |R(f)].

0s fe2ni s (0]
Clean separation of 3 Hz and Difficulty separating 3.2 Hz and
4 Hz frequency components 4 Hz frequency components

More generally, for a rectangular pulse of duration T seconds, the frequency resolution is 1/T.
The value of 1/T is also the null bandwidth.

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

In the course of computing the spectrogram, we apply a rectangular pulse to the discrete-time
signal to extract a block of samples to compute their Fourier series coefficients using the fast
Fourier transform. Consider a discrete-time signal that is a two-sided sine signal and the first N
samples are kept:

c[n] = sin(ex n) rect((n — N/2)/N)
Here, r[n] = rect((n — N/2)/N) which has amplitude 1 forn € {0, 1,, N — 1} and 0 elsewhere. We

can also write r[n] = u[n] — u[n-N] where u[n] is the unit step function. The discrete-time Fourier
transform of r[n] is a periodic sinc function times a phase shift :

. (N
s (?w) e~ JO(N-1)/2
sin (7

~—————
periodic sinc
function

where o is in units of rad/sample. The periodic sinc function is periodic in «® with period 2.
Here’s one period of |[R(w)| for N=8:

R(w) =

[R{w)|

9
—» Aw w = -pi : 0.001 : pi;

N = 8;
Rw = sin(N*w/2) ./ sin(w/2);
figure;
plot (w, abs(Rw), 'k','LineWidth',2);
title("[R(w) ")7
xlabel('w');
ylim([0, 9]);

This is the magnitude response of an averaging filter with 8 coefficients. Please see the
Designing Averaging Filters handout.

The first zero for the magnitude response in positive frequencies occurs at 2t / N. This is the
null bandwidth and also the frequency resolution Aw.

Let’s connect the frequency resolution in the discrete-time frequency domain to the continuous-
time frequency domain:

Aw =2 = 202, means that Af = Is
N fs N

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf

