
EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

% In-Lecture Assignment #1 on Sep. 13, 2023. Based on homework problem 1.2.

% Key takeaways: (1) Chirp signals are useful in localization, testing and training

% because they linearly sweep a range of frequencies, and (2) Spectrograms analyze

% a signal in the time and frequency domains simultaneously so that frequencies can

% be localized in time. Spectrogram trades off frequency resolution for time resolution.

% Chirp Signals: Please see slides 1-14 to 1-16 of CommonSignalsInMatlab.pptx.

% Spectrograms: Please see slides 1-17 to 1-20 of CommonSignalsInMatlab.pptx.

% Introduction: A chirp signal is a sinusoid whose principal frequency

% increases (or decreases) over time. A chirp signal has the form

% c(t) = cos((t)) where (t) = 2 (f0 + 0.5 fstep t) t = 2 f0 t + fstep t2

% The principal frequency in Hz is f0 when t = 0 and then changes over time at a

% rate of fstep in units of Hz/s. The principal frequency of a sinusoid at a given

% point in time is called the instantaneous frequency, and it is defined as

% d (t) / dt in units of rad/s. d (t) / dt = 2 f0 + 2 fstep t = 2 (f0 + fstep t).

% We divide d (t) / dt by 2 to obtain instantaneous frequency in Hz of f0 + fstep t.

% (a) Generate a chirp signal that lasts 10s with f0 = 20 Hz and fstep = 420 Hz/s.

% Use sampling rate fs of 44100 Hz. The chirp will sweep through the principal

% frequencies of the keys on an 88-key piano. Here’s Matlab code to get started.
%%% Generate a chirp signal with frequency increasing

%%% from f0 to (f0 + fstep time) over time seconds

time = 10;

f0 = 20;

fstep = 420;

fs = 44100;

Ts = 1 / fs;

t = 0 : Ts : time;

%%% Add code here to define the chirp signal y = cos(angle(t))

angle = 2*pi*f0*t + pi*fstep*t.^2;

y = cos(angle);

% (b) Play the chirp signal as an audio signal. Describe what you hear.

% I hear a rising pitch over time. Sounds like a slide whistle or a tsunami warning siren

% (rb.gy/18exl). Note: Some laptop playback systems cannot play frequencies below 200 Hz.
sound(y, fs);

pause(time+1);

% (c) Plot the spectrogram of the chirp signal and describe the visual representation.

% Spectrogram shows a yellow line that represents the principal frequency in the chirp

% signal. The line goes from 20 Hz at time 0s to 4220 Hz at time 10s. The spectrogram

% plot is on the next page. See Appendix A for explanation of spectrogram arguments.
figure;

blockSize = 256; overlap = 128;

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');

title('(c) Spectrogram with block size 256 and overlap 128');

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
https://rb.gy/18exl

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

% (d) Give the code for the spectrogram that would improve the

% frequency resolution by a factor of two vs. part (c).

% The frequency resolution is what is possible from observing a signal for a block of

% N samples which lasts for N Ts seconds. From homework problem 0.1, the frequency

% frequency resolution in Hz is the inverse of the observation time or 1 / (N Ts) = fs / N.

% Increase N to decrease (improve) frequency resolution.

% The yellow line in the spectrogram with N doubled is half the width vs. part (c).

% Please see the derivation of frequency resolution in Appendix B.
figure;

blockSize = 2*256; overlap = 128;

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');

title('(d) Spectrogram with block size 512 and overlap 256');

% (e) Give the code for the spectrogram that would improve the time resolution,

% i.e. localizing frequency components in time, by a factor of two vs. part (c).

% The time resolution means the ability to identify when a frequency component occurs

% in time. In a block of N samples, we do not know when frequency components occur, and

% hence, our time resolution in seconds is N Ts. We improve time resolution by reducing N.
figure;

blockSize = 256/2; overlap = blockSize/2;

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis');

title('(e) Spectrogram with block size 128 and overlap 64');

In all three spectrogram plots, the extent

of the horizontal time axis is the same

(from 0 to 10s) and the extent of the

vertical frequency axis is the same (from

0 to ½ fs where fs = 44100 Hz). We have

chosen fs to satisfy the sampling theorem

fs > 2 fmax where fmax is the maximum

frequency of interest (4220 Hz) and to

be a standard audio sampling rate.

(d)

(c) (e)

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

Appendix A: Arguments to the MATLAB spectrogram function by Dan Jacobellis

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

Appendix B: Derivation of Frequency Resolution

Frequency resolution of Δ𝑓 Hz means two frequency components spaced Δ𝑓 Hz apart can each

be clearly identified by an algorithm, e.g. well separated in a plot of the frequency domain.

We’ll illustrate the concept of frequency resolution by revisiting homework problem 0.1.

Homework 0.1 concerned a sine signal c(t) lasting from 0s to 1s. The mathematical expression is

a two-sided sine signal multiplied by a rectangular pulse that lasts from 0s to 1s:

c(t) = sin(2 fc t) rect(t – ½)

The continuous-time Fourier transform of r(t) = rect(t – ½) is a sinc function times a phase shift

𝑅(𝑓) = 𝐹 { rect (𝑡 −
1

2
) } = sinc(𝑓) 𝑒−𝑗𝜋𝑓 where sinc(𝑥) =

sin (𝜋𝑥)

𝜋𝑥
 and

𝐶(𝑓) =
𝑗

2
𝑒−𝑗𝜋(𝑓+𝑓𝑐)sinc(𝑓 + 𝑓𝑐) −

𝑗

2
𝑒−𝑗𝜋(𝑓−𝑓𝑐)sinc(𝑓 − 𝑓𝑐) due to the modulation property.

Below are the plots of |𝑅(𝑓)| on the left and |𝐶(𝑓)| for 𝑓𝑐 = 4 Hz on the right:

For a signal lasting 0s to 1s and containing sinusoids at frequencies 3 Hz and 4 Hz,

c2(t) = sin(2 f0 t) rect(t – ½) + sin(2 f1 t) rect(t – ½)

let’s see if we can resolve the two frequencies. We’re looking for two peaks in the frequency

domain plot that are well separated at 3 Hz and 4 Hz. Between the peaks, the magnitude

response should not be higher than the “sidelobes” at frequencies higher than 1 Hz in |𝑅(𝑓)|.

More generally, for a rectangular pulse of duration T seconds, the frequency resolution is 1/T.

The value of 1/T is also the null bandwidth.

Clean separation of 3 Hz and

4 Hz frequency components
Difficulty separating 3.2 Hz and

4 Hz frequency components

Δ𝑓

EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin

In the course of computing the spectrogram, we apply a rectangular pulse to the discrete-time

signal to extract a block of samples to compute their Fourier series coefficients using the fast

Fourier transform. Consider a discrete-time signal that is a two-sided sine signal and the first N

samples are kept:

c[n] = sin(c n) rect((n – N/2)/N)

Here, r[n] = rect((n – N/2)/N) which has amplitude 1 for 𝑛 𝜖 {0, 1, … . , 𝑁 − 1} and 0 elsewhere. We

can also write r[n] = u[n] – u[n-N] where u[n] is the unit step function. The discrete-time Fourier

transform of r[n] is a periodic sinc function times a phase shift :

𝑅(𝜔) =
sin (

𝑁𝜔
2
)

sin (
𝜔
2
)⏟

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑖𝑛𝑐
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑒−𝑗𝜔(𝑁−1)/2

where is in units of rad/sample. The periodic sinc function is periodic in with period 2.

Here’s one period of |𝑅(𝜔)| for N = 8 :

This is the magnitude response of an averaging filter with 8 coefficients. Please see the

Designing Averaging Filters handout.

The first zero for the magnitude response in positive frequencies occurs at 2 / N. This is the

null bandwidth and also the frequency resolution Δ𝜔.

Let’s connect the frequency resolution in the discrete-time frequency domain to the continuous-

time frequency domain:

Δ𝜔 =
2𝜋

𝑁
= 2𝜋

Δ𝑓

𝑓𝑠
 means that Δ𝑓 =

𝑓𝑠

𝑁

w = -pi : 0.001 : pi;

N = 8;

Rw = sin(N*w/2) ./ sin(w/2);

figure;

plot(w, abs(Rw), 'k','LineWidth',2);

title('|R(w)|');

xlabel('w');

ylim([0, 9]);

Δ𝜔

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf

