
EE 445S Real-Time DSP Lab, Prof. Brian L. Evans, The University of Texas at Austin 

% In-Lecture Assignment #1 on Wednesday, Feb. 9, 2022, updated Sep. 14, 2022 

% Based on homework problem 1.2. 

% Key takeaways: (1) Chirp signals are useful in localization, testing and training 

% because they linearly sweep a range of frequencies, and (2) Spectrograms analyze 

% a signal in the time and frequency domains simultaneously so that frequencies can 

% be localized in time. Spectrogram trades off frequency resolution for time resolution. 

% Chirp Signals: Please see slides 1-14 to 1-16 of CommonSignalsInMatlab.pptx. 

% Spectrograms:  Please see slides 1-17 to 1-20 of CommonSignalsInMatlab.pptx. 

% Introduction: A chirp signal is a sinusoid whose principal frequency 

% increases (or decreases) over time.  A chirp signal has the form 

% c(t) = cos( (t) )  where (t) = 2  ( f0 + 0.5 fstep t ) t = 2  f0 t +  fstep t2 

% The principal frequency in Hz is f0 when t = 0 and then changes over time at a 

% rate of fstep in units of Hz/s. The principal frequency of a sinusoid at a given 

% point in time is called the instantaneous frequency, and it is defined as 

% d (t) / dt in units of rad/s.  d (t) / dt = 2  f0 + 2  fstep t = 2  (f0 + fstep t).  

% We divide d (t) / dt by 2 to obtain instantaneous frequency in Hz of f0 + fstep t. 

% (a) Generate a chirp signal that lasts 10s with f0 = 20 Hz and fstep = 420 Hz/s. 

% Use sampling rate fs of 44100 Hz.  The chirp will sweep through the principal 

% frequencies of the keys on an 88-key piano. 

% Here is Matlab code to help you get started. 
%%% Generate a chirp signal with frequency increasing 

%%% from f0 to (f0 + fstep time) over time seconds 

time = 10; 

f0 = 20; 

fstep = 420; 

fs = 44100; 

Ts = 1 / fs; 

t = 0 : Ts : time; 

%%% Add code here to define the chirp signal y = cos( angle(t) ) 

angle = 2*pi*f0 + pi*fstep*t.^2; 

y = cos(angle); 

% (b) Play the chirp signal as an audio signal. Describe what you hear. 

% I hear a rising pitch over time.  Sounds like a slide whistle or a tsunami warning siren. 

% Note:  Some laptop playback systems cannot play frequencies below 200 Hz. 

sound(y, fs); 

pause(time+1); 

% (c) Plot the spectrogram of the chirp signal using the spectrogram 

% function in Matlab and describe the visual representation. 

% Spectrogram shows a yellow line that represents the principal frequency in the chirp 

% signal.  The line goes from 20 Hz at time 0s to 4220 Hz at time 10s.  The spectrogram 

% plot is on the next page.  See Appendix A for explanation of spectrogram arguments. 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
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figure; 

blockSize = 256; overlap = 128; 

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis'); 

% (d) Give the code for the spectrogram that would improve the 

% frequency resolution by a factor of two vs. part (c) 

% Frequency resolution is fs / N.  Increase N to decrease (improve) frequency resolution. 

% The yellow line in the spectrogram with N doubled is half the width vs. part (c). 

% Please see the derivation of frequency resolution in Appendix B. 
figure; 

blockSize = 2*256; overlap = 128; 

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis'); 

% (e) Give the code for the spectrogram that would improve the time resolution, 

% i.e. localizing frequency components in time, by a factor of two vs. part (c). 

% Time resolution is proportional to block size.  So, decrease the block size to improve 

% the time resolution.  This is at odds with improving frequency resolution in (d). 

% Note: Another interpretation of “time resolution” is the resolution along the time axis 

% in the spectrogram plot, which is determined by the shift from one block to the next 

% given by shift = blockSize – overlap.  We would decrease the shift to improve the time 

% resolution along the time axis, and the shift is still proportional to block size. 
figure; 

blockSize = 256/2; overlap = blockSize/2; 

spectrogram(y, hamming(blockSize), overlap, blockSize, fs, 'yaxis'); 

 

  

(c) (e) 

(d) 
In all three spectrogram plots, the extent 

of the horizontal time axis is the same 

(from 0 to 10s) and the extent of the 

vertical frequency axis is the same (from 

0 to ½ fs where fs = 44100 Hz).  We have 

chosen fs to follow the sampling theorem 

fs > 2 fmax where fmax is the maximum 

frequency of interest (4220 Hz) and to 

be a standard audio sampling rate. 
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Appendix A: Arguments to the MATLAB spectrogram function by Dan Jacobellis 
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Appendix B: Derivation of Frequency Resolution 

Frequency resolution of Δ𝑓 Hz means two frequency components spaced Δ𝑓 Hz apart can each 

be clearly identified by an algorithm, e.g. well separated in a plot of the frequency domain. 

We’ll illustrate the concept of frequency resolution by revisiting homework problem 0.1. 

Homework 0.1 concerned a sine signal c(t) lasting from 0s to 1s.  The mathematical expression is 

a two-sided sine signal multiplied by a rectangular pulse that lasts from 0s to 1s: 

c(t) = sin(2  fc t) rect(t – ½) 

The continuous-time Fourier transform of r(t) = rect(t – ½) is a sinc function times a phase shift 

𝑅(𝑓) = 𝐹 { rect (𝑡 −
1

2
) } = sinc(𝑓) 𝑒−𝑗𝜋𝑓 where  sinc(𝑥) =

sin (𝜋𝑥)

𝜋𝑥
 and 

𝐶(𝑓) =
𝑗

2
𝑒−𝑗𝜋(𝑓+𝑓𝑐)sinc(𝑓 + 𝑓𝑐) −

𝑗

2
𝑒−𝑗𝜋(𝑓−𝑓𝑐)sinc(𝑓 − 𝑓𝑐) due to the modulation property. 

Below are the plots of |𝑅(𝑓)| on the left and |𝐶(𝑓)| for 𝑓𝑐 = 4 Hz on the right: 

 
For a signal lasting 0s to 1s and containing sinusoids at frequencies 3 Hz and 4 Hz, 

c2(t) = sin(2  f0 t) rect(t – ½) + sin(2  f1 t) rect(t – ½) 

let’s see if we can resolve the two frequencies.  We’re looking for two peaks in the frequency 

domain plot that are well separated at 3 Hz and 4 Hz.  Between the peaks, the magnitude 

response should not be higher than the “sidelobes” at frequencies higher than 1 Hz in |𝑅(𝑓)|. 

 
 

 

More generally, for a rectangular pulse of duration T seconds, the frequency resolution is 1/T.  

The value of 1/T is also the null bandwidth. 

Clean separation of 3 Hz and 

4 Hz frequency components 
Difficulty separating 3.2 Hz and 

4 Hz frequency components 

Δ𝑓 
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In the course of computing the spectrogram, we apply a rectangular pulse to the discrete-time 

signal to extract a block of samples to compute their Fourier series coefficients using the fast 

Fourier transform.  Consider a discrete-time signal that is a two-sided sine signal and the first N 

samples are kept: 

c[n] = sin(c n) rect((n – N/2)/N) 

Here, r[n] = rect((n – N/2)/N) which has amplitude 1 for 𝑛 𝜖 {0, 1, … . , 𝑁 − 1} and 0 elsewhere. We 

can also write r[n] = u[n] – u[n-N] where u[n] is the unit step function. The discrete-time Fourier 

transform of r[n] is a periodic sinc function times a phase shift : 

𝑅(𝜔) =
sin (

𝑁𝜔
2
)

sin (
𝜔
2
)⏟      

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑖𝑛𝑐
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑒−𝑗𝜔(𝑁−1)/2 

where  is in units of rad/sample. The periodic sinc function is periodic in  with period 2.  

Here’s one period of |𝑅(𝜔)| for N = 8 : 

 
This is the magnitude response of an averaging filter with 8 coefficients.  Please see the 

Designing Averaging Filters handout.  

 

The first zero for the magnitude response in positive frequencies occurs at 2 / N.  This is the 

null bandwidth and also the frequency resolution Δ𝜔. 

 

Let’s connect the frequency resolution in the discrete-time frequency domain to the continuous-

time frequency domain: 

 

Δ𝜔 =
2𝜋

𝑁
= 2𝜋

Δ𝑓

𝑓𝑠
  means that Δ𝑓 =

𝑓𝑠

𝑁
 

 

 

w = -pi : 0.001 : pi; 

N = 8; 

Rw = sin(N*w/2) ./ sin(w/2); 

figure; 

plot(w, abs(Rw), 'k','LineWidth',2 ); 

title( '|R(w)|' ); 

xlabel( 'w' ); 

ylim( [0, 9] ); 

 

Δ𝜔 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf

