EE 445S Real-Time Digital Signal Processing Laboratory Prof. Briamans

Four Waysto Filter a Signal

Problem: Evaluate four ways to filter an input signal. Ruaystofilt.m on page 143 (Section
7.2.1) of Johnson, Sethares & Klein using

* h[n] that is a four-symbol raised cosine pulse aith 0.75 (4 samples/symbol, i.e. 16 samples)

* X[n] that is an upsampled 8-PAM symbol amplitude signal with 1 and 4 samples/symbol
and that is defined as the following 32-length vector (where each musnd@esample value)
as

x=[-7000 -5000 -3000 -1000 1000 3000 5000 7000]

In the code provided by Johnson, Sethares & Klein, please rgpdacewith stem so that the
discrete-time signals are plotted in discrete time instead of continuais tim

Please comment on the different outputs. Please state whathemethod implements linear
convolution or circular convolution or something else. Please see the online homework hints.

Hints. To compute the values of h, please use the "rcosine” command ebMaill not the
"SRRC" command. The length of h should be 16. The syntax of the "rcosine” command is

rcosine(Fd, Fs, TYPE_FLAG, beta)

The ratio Fs/Fd must be a positive integer. Since the the number of samples pelisynbol
Fs/Fd must be 4. The rcosine function is defined in the Matlab communications toolbox.

Running the rcosine function with these parameters gives a pulse shape of 25. d&eplast

to keep four symbol periods of the pulse shape. That is, we want to keep two symbol periods to
the left of the maximum value, the symbol period containing the maximum valuefastthe
sample, and the symbol period immediately following that:

rcosinelen25 = rcosine(1, 4, 'fir', 0.75);
h = rcosinelen25(5:20);
stem(h)

1.2

1+
0.8
0.6

0.4r

. T T

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Briamans

Some of the methods yield linear convolution, and some do not. With an input signal of 32
samples in length and a pulse shaping filter with an impulse response of 16 sargrigth,
linear convolution would produce a result that is 47 samples in length (i.e., 32 + 16 - 1).

For the FFT-based method, the length of the FFT determines the length oktld fi#isult. An
FFT length of less than 47 would yield circular convolution, but it wouldn't be linear
convolution. When the FFT length is long enough, the answer computed by circular gonvolut
is the same as by linear convolution.

Consider when the filter is a block in a block diagram, as would be found in Simulink or
LabVIEW. When executing, the filter block would take in one sample from the input and
produce one sample on the output. How many times to execute the block? As many times as
there are samples on the input. How many samples would be produced? As many times as t
block would be executed.

In particular, pay attention to the use of the FFT to implement lineamfdtek similar trick is
used in multicarrier communication systems, such as DSL, WiFi (IEEE 802.,1\Aakgixx
(IEEE 802.16e-2005), next-generation cellular data transmission (LTE), tetreésfital audio
broadcast, and handheld and terrestrial digital video broadcast.

Solution: The filter is given by its impulse responga] that has a length df, samples. The
signal is given by[n] and it has a length df, samples. Both the impulse response and input
signal are causal. In this problelj,is 16 samples and, is 32 samples.

Thefirst way of filtering computes the output signal as the linear convolutiofnbandh[n]:
Ly-1

Viewe[1 =o{1] * 0] = 3 Hm] =]

Linear convolution yields a signal of lendtht+Ly-1 = 47 samples.

The second way is to use the filter command in Matlab/Mathscript. The rfitemmand
produces one output sample for each input sample. This is a common béraaibiter block

in a block diagram simulation framework, e.g. Simulink or LabVIEW.heW executing, the
filter block would take in one sample from the input and produce one sampihe output. The
scheduler will execute the block as many times as thergaarples on the input. So, the length
of the filtered signal would bé&, = 32 samples. To obtain an output of lengthLgfL-1
samples, one would appebgl zeros toqn].

The third way is compute the output by using a Fourier-domain approach. For linear
convolution, the discrete-time Fourier transform of the linear convolwioqjn] and h[n] is
simply the product of their individual discrete-time Fourier tfamss. The product could then

be inverse transformed to find the filtered signal in the diseiime domain. That approach,
however, is difficult to automate using only numeric calculations. akernative is to use the
Fast Fourier Transform (FFT).

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Briamans

The FFT of thecircular convolution of x[n] andh[n] is the product of their individual FFTs. In
circular convolution, the signai§n] andh[n] are considered to be periodic with peridd One
period ofN samples of the circular convolution is defined as

Yerauar[N] = X[N] Oy hn] = Zh[((m))N] X{((n=m)),]

where (¢))x means that the argument is taken moduloNe will henceforth refer to the circular
convolution between periodic signals of lengihas circular convolution of lengtN. On a
programmable digital signal processor, we would use the modulo addressiegio accelerate
the computation of circular convolution.

Circular convolution of two finite-length sequences] and h[n] is equivalent to linear
convolution of those sequences by padding (appendipgy)zeros tdi[n] andLy-1 zeros to(n]
so that both of them are of the same length and using a cicargolution length ot ,+Ly-1
samples. This is the approach used in the FFT-based method in this problem.

The FFT-based method to compute the linear convolution uses an il 6N of L+Ly-1.
First, the FFT of lengtiN of the zero-paddes[n] is computed to giveX[k], and the FFT of
lengthN of the zero-paddelln] is computed to givél[k]. Second, the produdticuar[K] = X[K]
H[K] for k= 0,...,N-1 is computed. Then, the inverse FFT of lengtbf Yo cuar[K] is computed
to find Yeircuar[N]. Thisthird way results in an output signal b§+L,-1 = 47 samples.

Thefourth way to filter a signal uses a time-domain formula. It is darahte implementation
of the same approach used by the filter command. Hence, this apgivashan output of
lengthLy = 32 samples.

% waystofilt.m "conv" vs. "filter" vs. "freq domain " vs. "time domain"
over=4; % 4 samples/symbol
r=0.75; % roll-off

rcosinelen25 = rcosine(1, 4, fir' , 0.75);

h = rcosinelen25(5:20);

x=[-7000 -5000 -3000 -1000 100 030005000 7000]
yconv=conv(h,x) ; % (a) convolve x[n] * h[n]
n=1:length(yconv);stem(n,yconv)

xlabel(‘Time');ylabel('yeonv');title('Using conv function'); figure
yfilt=filter(h,1,x) ; % (b) filter x[n] with h[n]
n=1:length(yfilt);stem(n,yfilt)

xlabel(‘Time');ylabel(yfilt');title('Using the filter command'); figure
N=length(h)+length(x)-1; % pad length for FFT

ffth=fft([h zeros(1,N-length(h))]); % FFT of impulse response = H[K]
fftx=fft([X, zeros(1,N-length(x))]); % FFT of input = X[K]

fity=ffth .* fftx; % product of H[k] and X[k]
yfreg=real(ifft(ffty)); % (C)IFFT of product gives y[n]

% it's complex due to roundoff
n=1:length(yfreq); stem(n,yfreq)
xlabel('Time');ylabel('yreq')stitle('Using FFT"); figure

z=[zeros(1,length(h)-1),x]; % initial state in filter = 0

for k=1:length(x) % (d) time domain method
ytim(k)=fliplr(h)*z(k:k+length(h)-1); % iterates once for each x[k]

end % to directly calculate y[K]

n=1:length(ytim); stem(n,ytim)

xlabel(‘Time');ylabel('ytim');title('Using the time domain formula’');

%end of function

Q-3

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Briamans

