Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans

Homework #0

Review of Linear Systems and Signals Material

Assigned on Friday, January 17, 2014 Due on Friday, January 24, 2014, by 11:00am sharp in class

Late homework is subject to a penalty of two points per minute late.

Reading: Johnson, Sethares and Klein, chapters 1-2 and Appendices A and F

This assignment is intended to review key concepts from Linear Systems and Signals. Moreover, *all of the problems on homework #0 directly relate to lab #2.* This homework will be graded and be counted towards the overall homework grade for the course.

Here are key sections from Lathi's *Linear Systems and Signals* book (2nd ed) and Oppenheim & Willsky's *Signals and Systems* book (2nd ed) with respect to material in EE 445S:

0&W	Lathi	Topic		
1.6	1.7	System properties		
1.3 - 1.4	1.4	Basic continuous-time signals		
3.2 ##	2.4-4	Fundamental theorem for continuous-time linear systems **		
1.3 – 1.4	3.3	Basic discrete-time signals		
3.2 ##	3.8-3	Fundamental theorem for discrete-time linear systems **		
9.7.2	2.6	Stability of continuous-time filters		
10.7.2	3.10	Stability of discrete-time filters		
10.1 - 10.3	5.1	Z transforms		
10.5	5.2	Properties of the <i>z</i> -transform		
10.7.3 - 10.7.4	5.3	Transfer functions		
10.8	5.4	Realizations of transfer functions		
4.3 - 4.4	7.3	Fourier transform properties		
7.1	8.1	Sampling theorem		

** Please see Appendix F and slide 5-13 in the course reader for the fundamental theorem. ## O&W covers a slightly different version of the fundamental theorem in which a complex exponential is the input to a linear time-invariant system. Lathi also has that version as well.

Other signals and systems textbooks should contain equivalent material.

The MATLAB code in Johnson, Sethares & Klein also runs in LabVIEW Mathscript and GNU Octave (see footnote on JSK page viii about Octave). Feel free to use these environments. *Please submit any MATLAB code that you have written with the homework solution.* In the course reader, Appendix D gives a brief introduction to MATLAB. For quick review of commands in MATLAB for generating and plotting signals, please see

http://www.ece.utexas.edu/~bevans/courses/ee313/lectures/02_Signals/lecture2.ppt

As stated on the course descriptor, "Discussion of homework questions is encouraged. Please be sure to submit your own independent homework solution."

Time Slot	Monday	Tuesday	Wednesday	Thursday	Friday
9:30 am					Jia (ENS 137)
10:00 am					Jia (ENS 137)
10:30 am					
11:00 am	MLK Holiday		Evans (ETC 5.148)		Evans (ETC 5.148)
12:00 pm	MLK Holiday		Evans (ENS 433B)		Evans (cafe)
12:30 pm				Evans (ENS 433B)	Evans (cafe)
1:00 pm				Evans (ENS 433B)	Evans (cafe)
2:00 pm				Evans (ENS 433B)	
2:30 pm				()	
3:00 pm			Sinno (ENS 137)		
3:30 pm			Sinno (ENS 137)	Jia (ENS 137)	
4:00 pm			Sinno (ENS 137)	Jia (ENS 137)	
4:30 pm				Jia (ENS 137)	
5:00 pm				Jia (ENS 137)	
5:30 pm				Sinno (ENS 137)	
6:00 pm				Sinno (ENS 137)	

Office hours for the teaching assistants and Prof. Evans; **bold** indicates a 30-minute timeslot.

1. Continuous-Time Sinusoidal Generation. 27 points.

In practice, we cannot generate a two-sided sinusoid $\cos(2 \pi f_c t)$, nor can we wait until the end of time to observe a one-sided sinusoid $\cos(2 \pi f_c t) u(t)$.

In the lab, we can turn on a signal generator for a short time and observe the output in the time domain on an oscilloscope or in the frequency domain using a spectrum analyzer.

Consider a finite-duration cosine that is on from 0 sec to 1 sec given by the equation

$$c(t) = \cos(2 \pi f_c t) \operatorname{rect}(t - \frac{1}{2})$$

where f_c is the carrier frequency (in Hz).

- (a) Using MATLAB, LabVIEW Mathscript or GNU Octave, plot c(t) for -0.5 < t < 1.5 for $f_c = 10$ Hz. Turn in your code and plot. You may find the rectpuls command useful. 6 points. Give a formula for the Fourier transform of c(t) for a general value of f_c . 6 points.
- (b) Sketch by hand the magnitude of the Fourier transform of c(t) for a general value of f_c . Using MATLAB, LabVIEW Mathscript or GNU Octave, plot the magnitude of the Fourier transform of c(t) for $f_c = 8$ Hz. Turn in your code and plot. 9 points.
- (c) Describe the differences between the magnitude of the Fourier transforms of c(t) and a twosided cosine of the same frequency. What is the bandwidth of each signal? 6 points.

2. Downconversion. 19 points.

A signal x(t) is input to a mixer to produce the output y(t) where

$$y(t) = x(t) \cos(\omega_0 t)$$

where $\omega_0 = 2 \pi f_0$ and $f_0 = 2$ kHz. A block diagram of the mixer is shown below on the left. The Fourier transform of x(t) is shown below on the right.

- (a) Using Fourier transform properties, derive an expression for Y(f) in terms of X(f). 6 points.
- (b) Sketch Y(f) vs. f. Label all important points on the horizontal and vertical axes. 6 points.
- (c) What operation would you apply to the signal y(t) in part (b) to obtain a baseband signal? The process of extracting the baseband signal from a bandpass signal is known as *downconversion*. 7 points.

3. Sampling in Continuous Time. 24 points.

Sampling the amplitude of an analog, continuous-time signal f(t) every T_s seconds can be modeled in continuous time as

$$y(t) = f(t) p(t)$$

where p(t) is the impulse train defined by

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

 T_s is known as the sampling duration. The Fourier series expansion of the impulse train is

$$p(t) = \frac{1}{T_s} \left(1 + 2\cos(\omega_s t) + 2\cos(2\omega_s t) + \dots \right)$$

where $\omega_s = 2 \pi / T_s$ is the sampling rate in units of radians per second.

(a) Plot the impulse train
$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$
. 6 points.

- (b) Note that in part (a), p(t) is periodic. What is the period? 6 points.
- (c) Using the Fourier series representation of p(t) given above, please give a formula for $P(\omega)$, which is the Fourier transform of p(t). Express your answer for $P(\omega)$ as an impulse train in the Fourier domain. 6 points.
- (d) What is the spacing of adjacent impulses in the impulse train in $P(\omega)$ with respect to frequency ω in rad/s? 6 points.

4. Discrete-Time Sinusoidal Generation. 30 points.

Consider a causal discrete-time linear time-invariant system with input x[n] and output y[n] being governed by the following difference equation:

$$y[n] = (2 \cos \omega_0) y[n-1] - y[n-2] + (\sin \omega_0) x[n-1]$$

The impulse response of the above system is a *causal sinusoid* with discrete-time frequency ω_0 in units of rad/sample. The value of ω_0 would normally be in the interval $[-\pi, \pi)$. You will be implementing the above difference equation in C in lab #2 on a programmable digital signal processor for real-time sinusoidal generation.

- (a) Draw the block diagram for this system using add (or summation), multiplication (or gain), and delay blocks. Please label delay blocks with the text z^{-M} to denote a delay of M samples. Use arrowheads to indicate direction of the flow of signals. 6 points.
- (b) Please state all initial conditions. Please give values for the initial conditions to satisfy the stated system properties. 6 points.
- (c) Find the equation for the transfer function in the *z*-domain, including the region of convergence. 6 points.
- (d) Compute the inverse z-transform of the transfer function in part (c) to find the impulse response of the system. 6 points.
- (e) Using MATLAB, LabVIEW Mathscript or GNU Octave, plot the impulse response obtained in part (d) for ω_0 equal to 0, π , and a value in the interval (0, π) of your choosing. Turn in your code and plots. 6 points.