
Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

 

Homework #1 

 

Sinusoids, Transforms and Transfer Functions 

 

Assigned on Friday, January 24, 2014 

Due on Friday, January 31, 2014, by 11:00am sharp in class 

 

Late homework will be subject to a penalty of 2 points per minute late. 

 

Reading: Johnson, Sethares & Klein, Software Receiver Design, chap. 1-3, Appendices A & F 

 

This assignment is intended to continue our review of key concepts from Linear Systems and Signals. 

 

Here are key sections from Lathi’s Linear Systems and Signals book (2
nd

 ed) and Oppenheim & 
Willsky’s Signals and Systems book (2

nd
 ed) with respect to material in EE 445S: 

O&W Lathi Topic 

1.6 1.7 System properties 

1.3 – 1.4 1.4 Basic continuous-time signals 

3.2 ## 2.4-4 Fundamental theorem for continuous-time linear systems ** 

1.3 – 1.4 3.3 Basic discrete-time signals 

3.2 ## 3.8-3 Fundamental theorem for discrete-time linear systems ** 

9.7.2 2.6 Stability of continuous-time filters 

10.7.2 3.10 Stability of discrete-time filters 

10.1 – 10.3 5.1 Z transforms 

10.5 5.2 Properties of the z-transform 

10.7.3 – 10.7.4 5.3 Transfer functions 

10.8 5.4 Realizations of transfer functions 

4.3 – 4.4 7.3 Fourier transform properties 

7.1 8.1 Sampling theorem 

** Please see Appendix F and slide 5-13 in the course reader for the fundamental theorem. 

## O&W covers a slightly different version of the fundamental theorem in which a complex 

exponential is the input to a linear time-invariant system.  Lathi also has that version as well. 

 

Other signals and systems textbooks should contain equivalent material. 

 

You may use any computer program to help you solve these problems, check answers, etc.  Please 

submit any MATLAB code that you have written for the homework solution.  In the course reader, 

Appendix D gives a brief introduction to MATLAB.  The MATLAB code in the Johnson, Sethares 

and Klein book also runs in LabVIEW Mathscript and GNU Octave. 

 

As stated on the course descriptor, “Discussion of homework questions is encouraged. Please be 

sure to submit your own independent homework solution.”  



Office hours for the teaching assistants and Prof. Evans; bold indicates a 30-minute timeslot. Please 
note the change in office hours for Ms. Sinno. 

Time Slot Monday Tuesday Wednesday Thursday Friday 

9:30 am 

 

    Jia 

(ENS 137) 

10:00 am     Jia 

(ENS 137) 

10:30 am 

 

     

11:00 am Evans 
(ETC 5.148) 

 Evans 
(ETC 5.148) 

 Evans 
(ETC 5.148) 

12:00 pm Evans 

(ENS 433B) 

 Evans 

(ENS 433B) 

 Evans 

(cafe) 

12:30 pm    Evans 

(ENS 433B) 

Evans 

(cafe) 

1:00 pm 
 

   Evans 
(ENS 433B) 

Evans 
(cafe) 

2:00 pm    Evans 

(ENS 433B) 

 

2:30 pm 

 

     

3:00 pm   Sinno 

(ENS 137) 

 

 

 

3:30 pm   Sinno 

(ENS 137) 

Jia 

(ENS 137) 

 

4:00 pm   Sinno 

(ENS 137) 

Jia 

(ENS 137) 

 

4:30 pm 

 

  Sinno 

(ENS 137) 

Jia 

(ENS 137) 

 

5:00 pm 

 

  Sinno 

(ENS 137) 

Jia 

(ENS 137) 

 

5:30 pm    Sinno 

(ENS 137) 

 

6:00 pm 
 

     

The points for the questions below add up to 99 points.  Everyone who submits homework #1 will 

receive the extra point. 

1.  Transfer Functions.  48 points. 

With x[n] denoting the input signal and y[n] denoting the output signal, give the difference equation 

relating the input signal to the output signal in the discrete-time domain, give the initial conditions and 

their values, and find the transfer function in the z-domain and the associated region of convergence 
for the z-transform function, for the following linear time-invariant discrete-time systems: 

(a) Causal averaging filter with five coefficients.  See lecture slide 3-10.  12 points. 

(b) Causal discrete-time approximation to first-order differentiator.  See lecture slide 3-20. 

12 points. 

(c) Causal discrete-time approximation to first-order integrator.  See online hints.  12 points. 



(d) Causal bandpass filter with center frequency 0 given by the input-output relationship 

y[n] = (2 cos 0) r y[n-1] – r2 y[n-2] + x[n] - (cos 0) x[n-1] 

where 0 < r < 1.  Here, r is the radius of the two pole locations.  12 points. 

The following sections might be helpful: 

 Appendix F in Johnson, Sethares & Klein’s Software Defined Radio book 

 Sections 5.1 and 5.2 in Lathi's book Linear Systems and Signals, or Sections 11.2 and 11.3 in 
Roberts’ Signals and Systems book 

Recall that transfer functions of the form H(z) = Y(z) / X(z) only apply for linear time-invariant 

systems. A linear time-invariant system is uniquely defined by its impulse response.  The generalized 

transform of the impulse response is a way to compute the transfer function. 

 

Comment:  The linear time-invariant (LTI) system in (d) whose input-output relationship is 

y[n] = (2 cos 0) r y[n-1] – r2 y[n-2] + x[n] – (cos 0) x[n-1]  

has several applications.  When r = 1, the impulse response of the LTI system is 

cos(0 n) u[n] 

Hence, the LTI system can be used as a sinusoidal generator.  For r = 1, the system is not bounded-

input bounded-output (BIBO) stable.  If cos(0 n) u[n] were the input signal, resonance would lead to 

unbounded amplitude on the output.  (Resonance does not always lead to an unbounded output.) 

The unbounded response to input cos(0 n) u[n] can be used to our advantage.  If the filter output 

were to grow very large in absolute value, then we know that the input signal would have a component 

equal or at least approximately equal to cos(0 n) u[n].  The BIBO instability would allow us to detect 

a sinusoid.  Applications of detecting sinusoidal tones in a signal include identification of notes in 

music, tracking of frequency hopping (e.g. in Bluetooth) and touchtone telephone signal decoding.  In 

practice, we use r  1 (e.g. r = 0.95) to have good frequency selectivity (i.e. a narrow passband). 
 

2. Spectral Analysis.  27 points. 

 

 Johnson, Sethares & Klein, Exercise 3.3, but use the following signals (9 points each): 

 

(a) A rectangular pulse s(t) = rect(t/8) which has an amplitude of 1 from -4 (inclusive) to 4 (non-

inclusive).  Plot the signal in the time domain for -8 < t < 8.  Estimate fmax.  Plot the spectrum. 

(b) A truncated sinc pulse s(t) = sinc(t) rect(t/8) where sinc(x) = sin(x) / (x).  Plot the signal in the 

time domain for -8 < t < 8.  Estimate fmax.  Plot the spectrum. 

(c) A decaying exponential s(t) = exp(-t) u(t).  Plot the signal in the time domain for -8 < t < 8.  

Estimate fmax.  Plot the spectrum. 

 

Here’s a way to estimate fmax for a continuous-time signal.  In order to plot a continuous-time signal, 

we’ll need to sample it.  The sampling rate should be chosen to satisfy fs > 2 fmax.  One way to 

determine fmax is to pick a very larger value for fs and estimate fmax from the resulting spectrum.   Then, 

if one chooses a much smaller fs > 2 fmax , then the value of fmax shouldn’t change; otherwise, aliasing 

has occurred and the initial fs wasn’t large enough. 



 

3. Two-Sided (Everlasting) Sinusoids and Their Finite Length Observations.  24 points. 

 

Johnson, Sethares & Klein, Exercise 3.7 on page 46.  Give the Fourier transform of x(t).  Plot the 

spectrum of x(t) for 0 < t < 1.  Justify how you determined the sampling rate.  12 points. 

 

In addition, find a formula for the Fourier transform of y(t) = x1(t) x2(t).  What principal frequencies 

are present in y(t)?  How do they relate to the principal frequencies in x1(t) of -10 Hz and 10 Hz and 

x2(t) of -18 Hz and 18 Hz?  Plot the spectrum of y(t) for 0 < t < 1.  12 points. 


