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The University of Texas at Austin 

Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

 Homework #1 Solutions on Z-Transforms and Spectral Analysis   

1. Transfer Functions 

With x[n] denoting the input signal and y[n] denoting the output signal, give the difference equation 

relating the input signal to the output signal in the discrete-time domain, give the initial conditions and 

their values, and find the transfer function in the z-domain and the associated region of convergence 

for the z-transform function, for the following linear time-invariant discrete-time systems. 

Note that (a) and (b) are examples of finite impulse response filters, and (c) and (d) are examples of 

infinite impulse response filters.  More on filters in lectures 5 & 6, and labs 2 & 3. 

(a) Causal five-coefficient averaging filter: 

The output is the average of the current and previous four input values.  The difference equation is 

     
 

 
     

 

 
       

 

 
       

 

 
       

 

 
       

where the initial conditions x[-1], x[-2], x[-3], x[-4] must be zero for the system to be LTI 

Transfer function:      
    

    
 

 

 
                    

 Region of convergence (ROC): all z except z ≠ 0.  Zero is excluded to prevent division by zero. 

(b) Causal discrete-time approximation to first-order derivative: 

The first-order derivative operation with output y(t) and input x(t) can be defined in terms of a limit: 

              
    

            

  
 

We can sample the system. The smallest separation between time-domain samples is the sampling 

time Ts so that t == Ts .  However, we cannot drive Ts to zero in practice: 

     
 

  
              

Due to sampling, the approximation is only valid for continuous-time frequencies up to one-half of the 

sampling rate, i.e. up to ½ fs, in value.   

In discrete-time, we prefer to abstract away the sampling rate when possible.  Difference equation is 
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where the initial condition x [-1] = 0 for the system to be LTI. 

Transfer function: 
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Region of convergence (ROC): all z except z ≠ 0.  Zero is excluded to prevent division by zero.  More 

generally, the ROC for a finite impulse response filter is the entire z-plane except at zero.   

(c) Causal discrete-time approximation to a first-order integrator: 

In continuous time, the output of a causal first-order integrator is defined by 

            
 

 

 

where x(t) is the input.  The discrete-time version obtained from sampling is 

          

 

   

 

This is inefficient because it requires unbounded amount of memory to store the previous input values. 

Instead, we can use the recursive difference equation, a.k.a. a running summation, 

][]1[][ nxnyny   

with y [-1] = 0 to make the system LTI.  

Transfer function: 
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ROC: |z| > 1 since the system is causal. 

 

(d) Damped bandpass resonator at fixed frequency 0 and radius r 

Difference equation was given in the problem to be 

y[n] = (2 cos 0) r y [n-1] – r2 y [n-2] + x[n] - (cos 0) x[n-1] 

and the initial conditions y[-1], y[-2] and x[-1] must be set to zero to make the system LTI. 

Taking the z-transform of both sides of the difference equation, we get 
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Y (z) = (2 cos 0) r  z-1 Y (z) – r2 z-2 Y (z) + X (z)  - (cos 0) z
-1 X (z) 

=> 
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We need to find the poles of this transfer function by finding the roots of the denominator as follows: 

1 - (2 cos 0) r z-1
 + r2 z-2

 = 0 

By multiplying each side by z2
 (assuming that z ≠ 0): 

z2
 - (2 cos 0) r z + r2

 = 0 

Roots are located at ½ (-b  sqrt ()).  Here, 
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Since  < 0, there are two complex roots: 
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Both poles have magnitude of r since 0 < r < 1. Under the assumption that the system is causal, the 

region of convergence will be outside of the circle of radius equal to the magnitude of the pole with 

the greatest magnitude, i.e. |z| > r.  For stability, r < 1 so as to keep the poles inside the unit circle. 

2. Spectral analysis 

Johnson, Sethares & Klein, Exercise 3.3, but use the following signals (9 points each) 

a) A rectangular pulse s(t) = rect(t/8) which has an amplitude of 1 from -4 (inclusive) to 4 (non-

inclusive).  Plot the signal in the time domain for -8 < t < 8.  Estimate fmax.  Plot the spectrum. 

Solution: 

Approach #1:  Use the continuous-time Fourier transform 

Using the Fourier transform table in Appendix E.2 in Roberts’ Signals and Systems book: 

     
 

 
  

          

   
                                 

 

 
  

          

   
            

where sinc(x) = sin( x) / ( x).  This is a lowpass magnitude spectrum with first null at f = 0.125 Hz.  

The magnitude spectrum decays at a rate of 1/f.  We could go with fmax = 0.125 Hz. 
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Approach #2: Plot spectrum for increasing sampling rates until the spectral shape no longer changes. 

The sampling theorem says that the sampling rate should be greater than twice the maximum 

frequency, i.e. fs  > 2 fmax.  By dividing both sides by 2, we see that fmax < ½ fs . Once we pick a 

sampling rate, the sampling process can only capture frequencies -½ fs  < f < ½ fs .  Continuous-time 

frequencies outside this range will alias and add on top of the continous-time frequencies in the range.  

(To be precise, the range of continuous-time frequencies should include either -½ fs or ½ fs .) 

In continuous time, as we saw on homework problem 0.3, we can model the result y(t) of sampling of 

a signal x(t) as the product of x(t) and an impulse train p(t). Impulses are separated by the sampling 

time Ts.  The Fourier transform is  

                          

 

    

 

As the sampling rate fs changes, the scaling of the sampled spectrum will change proportionally to fs. 

We sample the continuous-time signal using a sampling rate of 1024 Hz and then analyze the 

magnitude spectrum of the sampled signal.  The DC response has a value of 8000.  The magnitude 

spectrum falls below a value of 80 by 8 Hz.  A reduction by a factor of 100 corresponds to 80 dB.  We 

could go with fmax = 8 Hz. 

Note: The plotspec command from Software Receiver Design assumes that the time-domain signal 

starts at the origin.  In this problem, the extent of s(t) in the time domain is from -4s to 4s.  A shift in 

the time domain only affects the phase response— the magnitude response does not change. 

                       
  

fs = 1024; 
Ts = 1/fs; 
t = -8 : Ts : 8; 
s = rectpuls(t/8); 
plotspec(s,Ts); 
xlim([-2, 2]); % Zoom x axis 

 

 

Note:  The plotspec function is defined in the 
Matlab files that accompany the Software Receiver 
Design book.  The plotspec function will plot the 
spectrum over frequencies from -½ fs < f < ½ fs in 
the bottom plot. In the above Matlab code, we use 
xlim to display the spectrum over -2 Hz < f < 2 Hz. 
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b) A truncated sinc pulse s(t) = sinc(t) rect(t/8) where sinc(x) = sin(x) / (x).  Plot the signal in the 

time domain for -8 < t < 8.  Estimate fmax.  Plot the spectrum. 

Solution: 

Approach #1:  Use the continuous-time Fourier transform 

Multiplication in the time domain leads to convolution in the Fourier domain.  Using the Fourier 

transform table in Appendix E.2 in Roberts’ Signals and Systems book: 

 

Here,         = sin(x) / ( x). 

In S(f), the first term has a full width of 1 Hz based on the definition of the rectangle function. The 

second term has a main lobe width of 1/4 Hz, as shown in part (a). 

To estimate the bandwidth of S(f) we proceed with the following logic: The convolution of two finite 

duration signals, x(t) of duration Lx and y(t) of duration Ly, results in a signal z(t) of duration Lx+Ly. 

The area of overlap between the two terms in S(f) will be appreciable when only when the rectangle 

function overlaps with the main lobe of the sinc function. The main lobe of the sinc function has width 

1/4 and the rectangle function has width 1. Thus, we can estimate the full width of S(f) to be 1.25Hz. 

Accordingly, we estimate the bandwidth of S(f) to be fmax = 0.625 Hz. 

Approach #2: Plot the magnitude spectrum for increasing sampling rates until the magnitude 

spectrum no longer changes. 

                    
We’ll eyeball the spectrum and arbitrarily pick fmax = 0.5 Hz.  Also, fmax = 1 Hz is a better choice. 

 

Ts = 1/1000; 
t = -8:Ts:8; 
s = sinc(t).*((t >= -4)&(t < 4)); 
plotspec(s,Ts) 
xlim([-2, 2]) 

 

Note:  The plotspec function is defined in the 
Matlab files that accompany the Software Receiver 
Design book.  The plotspec function will plot the 
spectrum over frequencies from -½ fs < f < ½ fs in 
the bottom plot. In the above Matlab code, we use 
xlim to display the spectrum over -2 Hz < f < 2 Hz. 
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Note: The plotspec command from Software Receiver Design assumes that the time-domain signal 

starts at the origin.  In this problem, the extent of s(t) in time is from -4s to 4s.  A shift in the time 

domain only affects the phase response—the magnitude response does not change. 

c) A decaying exponential s(t) = exp(-t) u(t).  Plot the signal in the time domain for -8 < t < 8.  

Estimate fmax.  Plot the spectrum. 

Solution:  This is a commonly occurring signal because it is an impulse response of an LTI system 

governed by a first-order differential equation, such as an RC circuit. 

        
 

    
 

       
 

    
 

where      . 

        
 

    
  

 

     
 

 

When   =1, the power spectrum        , drops to half its value, and       decreases by a factor of 
 

  
, 

or 3dB. So, the 3 dB bandwidth is        rad/s.  In units of Hz, the 3 dB bandwidth is 
 

  
, making 

fmax about = 1/(4 ). Plotted in MATLAB: 

 
 

3. Two-Sided (Everlasting) Sinusoids and Their Finite Length Observations.  
Johnson, Sethares & Klein, Exercise 3.7 on page 46. 

 

(a) Give the Fourier transform of x(t).  Plot the spectrum of x(t) for 0 < t < 1.  Justify how you 

determined the sampling rate. 

x(t) = x1(t) + 0.5 x2(t) + 2 x3(t)  where  x1(t) = cos(2  10 t), x2(t) = cos(2  18 t), x3(t) = cos(2  33 t)   









Ts = 1/1000; 
t = -8:Ts:8; 
s = exp(-t) .* stepfun(t, 0); 
plotspec(s,Ts) 
xlim([-4, 4]) 

Note:  The plotspec function is defined in the 
Matlab files that accompany the Software Receiver 
Design book.  The plotspec function will plot the 
spectrum over frequencies from -½ fs < f < ½ fs in 
the bottom plot. In the above Matlab code, we use 
xlim to display the spectrum over -4 Hz < f < 4 Hz. 
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Plotted in MATLAB, 

 

 

 

 

 

 

 

 
In the Matlab code, the sampling rate fs is chosen to be 10 fmax, as explained later. 

Principal frequencies are 10 Hz, 18 Hz and 33 Hz. 

Fourier transform of x1 

zoomed in  

Fourier transform of x2 

 zoomed in  

Fourier transform of x3 

 zoomed in  

Fourier transform of x = x1 + x2 + x3 
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fs = 10*40; 
Ts = 1/fs; 
t = 0:Ts:1; 
x1 = cos(2*pi*10*t); 
x2 = cos(2*pi*18*t); 
x3 = cos(2*pi*33*t); 
x = x1 + 0.5*x2 + 2*x3; 
figure, plotspec(x1,Ts); 
figure, plotspec(x2,Ts); 
figure, plotspec(x3,Ts); 
figure, plotspec(x,Ts); 

Note:  The plotspec function is 
defined in the Matlab files that 
accompany the Software Receiver 
Design book.  The plotspec 
function will plot the spectrum 
over frequencies from -½ fs < f < 

½ fs in the bottom plot.  
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 zoomed in  

 
This illustrates the linearity property of the Fourier transform, which states that if 

                       

Then, 

                       

The spectrum of each component adds, and the resulting signal x contains the same frequencies 

f1, f2, and f3 from x1, x2, and x3 respectively, where                           . 

Since           
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For the two-sided sinusoidal signal x(t), fmax = 33 Hz.  In order to plot the signal, we would plot a 

finite observation.  From homework problem 0.3, we know that each sinusoidal component will 

have a non-zero but narrow bandwidth, as is evident in the earlier spectrum plots.  From those 

spectrum plots, we could pick fmax to be 40 Hz, and then safely pick the sampling rate as 10 fmax. 

(b) In addition, find a formula for the Fourier transform of y(t) = x1(t) x2(t).  What principal 

frequencies are present in y(t)?  How do they relate to the principal frequencies in x1(t) of -10 Hz 

and 10 Hz and x2(t) of -18 Hz and 18 Hz?  Plot the spectrum of y(t) for 0 < t < 1. 

 

If                , then                 .  So, 
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Or, plotted in MATLAB, with y(t) on the top and |Y(f)| on the bottom:  

 

Principal frequencies are 8 Hz and 28 Hz. 

These frequencies correspond to the sum 

and difference of 10 Hz and 18 Hz. 

 

MATLAB Scripts from in Johnson, Sethares and Klein's Software Receiver Design textbook 

The Matlab scripts should run "as is" in MATLAB or LabVIEW Mathscript facility.  

1. Copy the .m files on your computer from the "SRD - MatlabFiles" folder on the CD ROM: 
http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip 

2. Add the folder containing the .m files from the book to the search path.: 
 In MATLAB, use the addpath command 

 In LabVIEW, open the Mathscript window in LabVIEW by going to the Tools 
menu and select "Mathscript Window" (third entry), go the File menu, select 
"LabVIEW MathScript Properties" an d add the path. 

Johnson, Sethares and Klein intentionally chose not to copyright their programs so as to enable 

their widespread dissemination. 

 

Discussion of this solution set is available at http://www.youtube.com/watch?v=KOTsDFm3ehw  

Y  ( f  )   

0 8 -8 

(1/4)  

-28 28 

fs = 10*60; 
Ts = 1/fs; 
t = 0:Ts:1; 
x1 = cos(2*pi*10*t); 
x2 = cos(2*pi*18*t); 
y = x1.*x2; 
figure, plotspec(y,Ts); 

 

f (Hz) 

Note:  The plotspec function is defined in the 
Matlab files that accompany the Software 
Receiver Design book.  The plotspec function 
will plot the spectrum over frequencies from 
-½ fs < f < ½ fs in the bottom plot.  

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip
http://www.youtube.com/watch?v=KOTsDFm3ehw

