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Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

Homework #5 Solutions 

 

Problem 5.1 Steepest Descent 
Johnson, Sethares & Klein, exercise 6.23, page 117, but use J(x) = x2

 – 8x + 16. 

Explore the behavior of steepest descent by running polyconverge.m with different parameters, 
but use J(x) = x2

 – 8x + 16.  Derive the adaptive equations. 

Solution Prolog: The objective function is J(x) = x2
 – 8x + 16 = (x – 4)

2
 which is non-negative.  

The objective function is a bowl.  J’(x) = 2 x – 8.  The unique minimum of J(x) is at x = 4. 

 

a) Use values of µ of -0.01, 0.00, 0.01, 0.1, 1.0, 10.0. Can mu be too large or too small?  

Solution: We modify “polyconverge.m” to evaluate the effect of step size  on the convergence: 

% polyconverge.m find the minimum of J(x)=x^2-8x+16 via steepest descent 
N=500;                          % number of iterations 
mu=[-.01 0 .01 .1 1 10];        % algorithm stepsize 
x=zeros(size(1,N));             % initialize x to zero 
x(1)=5;                         % starting point x(1) 
all = zeros(length(mu), N); 
for i=1:length(mu) 
    for k=1:N-1                      
      x(k+1)=(1-2*mu(i))*x(k)+8*mu(i);    % update equation 
    end 
    all(i,:)= x; 
end 

subplot(3,2,1); plot (all(1,:)); title('mu = -0.01'); 
subplot(3,2,2); plot (all(2,:)); title('mu = 0'); 
subplot(3,2,3); plot (all(3,:)); title('mu = 0.01'); 
subplot(3,2,4); plot (all(4,:)); title('mu = 0.1'); 
subplot(3,2,5); plot (all(5,:)); title('mu = 1'); 
subplot(3,2,6); plot (all(6,:)); title('mu = 10'); 
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In the update equation, a positive (negative) value of  corresponds to finding the minimum 

(maximum) of the objective function. When  is zero, no update to the initial guess is made. 

From the plots, we see convergence when the step size  is 0.01 or 0.1, divergence for  of -0.01 

or 10, oscillation for of 1, and trivial convergence for  of 0. In fact,   is used to estimate the 

next value x[k+1] using the current value x[k], and it should be 0 <  < 1. 

Given iteration xi+1 = f(xi), initial guess x0, and interval [a, b] that contains iterates x0, x1, x2, …, 

the fixed-point theorem says x0, x1, x2, …, will converge to a fixed point x* = f(x*) if | f’(x) | < 1 

for all x ϵ [a, b].  With f(x) = (1 – 2) x + 8 , we have f’’(x) = 1 – 2 and guarantee | f’(x) | < 1 

for 0 < regardless of the initial guess.

Choice of  in (0,1) has an analogy with location of a single real-valued pole in a discrete-time 

LTI system. If we start the pole at zero and move it towards the unit circle, then the transition 

band will become narrower. If the pole is on the unit circle, the impulse response will be a unit 

step function (which oscillates at zero frequency). If the pole moves outside the unit circle, the 

impulse response grows without bound.  The JSK book explains this view on pages 117-118. 

 

b) Use µ of 0.01, and try N = 5, 40, 100, 5000. Can N be too large or too small? 

Solution: We modified “polyconverge.m” to see effect of number of iterations on convergence: 

% polyconverge.m find the minimum of J(x)= x^2-8x+16 via steepest descent 
N=[5 40 100 5000];      % number of iterations 
mu=.01;                 % algorithm stepsize 
x=zeros(1);             % initialize x to zero 
x(1)=5;                 % starting point x(1) 
y = zeros(4); 
for i=1:length(N) 
    for k=1:N(i)-1                       
      x(k+1)=(1-2*mu)*x(k)+8*mu;    % update equation 
    end 
    y(i)= min(x) 
    subplot(2,2,i); plot (x); 
end 

 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp  

The above plots show convergence vs. number of iterations for  = 0.01. 

 

With N = 5, 40 and 100, we do not have enough iterations to converge to 4 for a step size of

01.0 . The minimum values we can achieve are tabulated below: 

N Min 

5 4.9224 

40 4.4548 

100 4.1353 

500 4.0001 

If we use a step size of 0.1, we converge to x = 4 with about 500 iterations. In practice, the 

number of iterations required depends on the desired numerical precision.  

 

c)  Try a variety of values of x(1). Can x(1) be too large or too small? 

 

Solution: Changing the initial guess for x did not affect convergence. It will affect the speed of 

convergence, for a fixed step size, depending on how far the starting value is from the minimum. 

We used the following code to obtain our results: 
 

% polyconverge.m find the minimum of J(x)= x^2-8x+16 via steepest descent 
N=600;                          % number of iterations 
mu=.01;                         % algorithm stepsize 
x=zeros(size(1,N));             % initialize x to zero 
for i=1:100 
    x(1)=randi([-1000 1000],1,1); % starting point x(1) 
    for k=1:N-1                      
      x(k+1)=(1-2*mu)*x(k)+8*mu;    % update equation 
    end 
    plot (x); 
    hold on; 
end 
hold off; 
title('Effect of Starting Point');  
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This plot shows with 100 different starting points ranging from -1000 to 1000, all of the curves 

converge to our desired value of x = 4. 

 

Given iteration xi+1 = f(xi), initial guess x0, and interval [a, b] that contains iterates x0, x1, x2, …, 

the fixed-point theorem says x0, x1, x2, …, will converge to a fixed point x* = f(x*) if | f’(x) | < 1 

for all x ϵ [a, b].  With f(x) = (1 – 2) x + 8 , we have f’’(x) = 1 – 2 and guarantee | f’(x) | < 1 

for 0 < regardless of the initial guess.

 

Problem 5.2 Transceiver Simulation 

Johnson, Sethares & Klein, exercise 9.2, page 175.  Use M = 100, 20, 18 instead of M = 1000, 

25, 10.  

 

Using idsys.m, examine the effect of using different oversampling frequencies. Try M = 100, 20, 

18. What are the limiting factors that cause some to work and others to fail?  

 

Solution:  This problem uses 4-PAM encoding, i.e. 2 bits per symbol. The message to be sent is 

a string of ASCII characters. Since each ASCII character is eight bits, each ASCII character will 

correspond to four two-bit symbols. 

The problem statement refers to a parameter l which was set to 125 in idsys.m. Page 172 of Software 

Defined Radio has the following explanation: "The initial delay of 125 corresponds to half the length of 

the lowpass filter (0.5*fl) plus half the length of the correlator filter (0.5*M) plus half a symbol period 

(0.5*M), which accounts for the delay from the start of each pulse to its peak." 

In idsys.m, M is number of samples in a symbol period, a.k.a. oversampling ratio.  For M = 100, 

20 and 18, we evaluate communication performance.  The channel has no degradation. 

%idsys.m:  idealized transmission system 
%TRANSMITTER 
% encode text string as T-spaced 4-PAM sequence 
str='01234 I wish I were an Oscar Meyer wiener 56789'; 
m=letters2pam(str); N=length(m); % 4-level signal of length N 
% zero pad T-spaced symbol sequence to create upsampled 
% T/M-spaced sequence of scaled T-spaced pulses (T=1) 
M=1000;                       % number of samples in a symbol period 

mup=zeros(1,N*M);             % Hamming pulse filter with  
mup(1:M:N*M)=m;               % T/M-spaced impulse response 
p=hamming(M);                 % blip pulse of width M 
x=filter(p,1,mup);            % convolve pulse shape with data 
figure(1), plotspec(x,1/M)    % baseband signal 
t=1/M:1/M:length(x)/M;        % T/M-spaced time vector 
fc=20;                        % carrier frequency parameter 
c=cos(2*pi*fc*t);             % carrier signal 
r=c.*x;                       % modulate message with carrier 

 

If we convert the last four lines of the above code to the following, 

n=1:length(x);                % t = n / M 

fc=20;                        % carrier frequency parameter 
c=cos((2*pi*fc/M)*n);         % carrier signal with w0 = 2 pi fc / M 
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r=c.*x; 

then the carrier frequency is 0 = 2   fc / M rad/sample.  

To prevent aliasing, M > 2 fc. With fc = 20, M > 40 would prevent aliasing, and the combination 

of modulation by c[n] and demodulation by c[n] works properly. Even when aliasing occurs for 

M ≤ 40, modulation by c[n] and demodulation by c[n] works properly for most values of M. 

Aliasing occurs with respect to the carrier frequency fc = 20 when M  40.  When M = 10, 0 = 

4 rad/sample which aliases to 0 = 0 rad/sample.  When 0 = 0 rad/sample, the vector c is a 

vector of all ones, and the transmission is baseband instead of bandpass.  More on this later.  

 

For M = 100: 

 

 
 

reconstructed_message = 

 

01234 I wish I were an Oscar Meyer wiener 5678 
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For M = 20: 

 

 
reconstructed_message = 

 

00234   wish   werd `n sc`r  

eyer wiener 4678 
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For M = 18: 

 

 

reconstructed_message = 

01234 I wish I were an Oscar Meyer wiener 5678 
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The code for the receiver from idsys.m follows: 
 

%RECEIVER 
% am demodulation of received signal sequence r 
c2=cos(2*pi*fc*t);             % synchronized cosine for mixing 
x2=r.*c2;                      % demod received signal 
fl=50; fbe=[0 0.1 0.2 1];      % LPF parameters  
damps=[1 1 0 0 ];  
b=firpm(fl,fbe,damps);         % create LPF impulse response 
x3=2*filter(b,1,x2);           % LPF and scale signal 
% extract upsampled pulses using correlation implemented  
% as a convolving filter; filter with pulse and normalize 
y=filter(fliplr(p)/(pow(p)*M),1,x3); 
% set delay to first symbol-sample and increment by M 
z=y(0.5*fl+M:M:N*M);           % downsample to symbol rate 
figure(2), plot([1:length(z)],z,'.') % plot soft decisions 
% decision device and symbol matching performance assessment 
mprime=quantalph(z,[-3,-1,1,3])'; % quantize alphabet 
cvar=(mprime-z)*(mprime-z)'/length(mprime), % cluster variance 
lmp=length(mprime); 
pererr=100*sum(abs(sign(mprime-m(1:lmp))))/lmp, % symbol error 
% decode decision device output to text string 
reconstructed_message=pam2letters(mprime) 

 

The receiver decodes the string correctly for M = 18 and M = 100, but not for M = 20.  For other 

values, the receiver decodes the string correctly for M = 25 and M = 1000 but not for M = 10. 

In the presence of additive noise, the larger the value of M, the more samples the receiver uses in 

the correlation block (a.k.a. the matched filter block), the better the communication performance.   

However, there is no additive noise in this problem. 

Our demodulating filter passes normalized frequencies up to 0.1, but the Hamming pulse for M = 

20 has a lowpass normalized bandwidth of 0.2 from eyeballing its spectrum via 

freqz(hamming(20)).  The Hamming pulse for M = 10 has a lowpass normalized bandwidth of 

0.5, and by changing the demodulating filter, symbol errors were still high (15-20%). 

The problem when M = 10 and M = 20 is that the transmission is baseband and not bandpass.  In 

the receiver, the following line of code is necessary to scale the output of the demodulating filter 

for bandpass transmission: 

x3=2*filter(b,1,x2);           % LPF & scale due to bandpass transmission 

For baseband transmission, this line should be changed to 

x3=filter(b,1,x2);             % LPF (no scaling for baseband transmission) 

and the string will be correctly decoded. 

For baseband PAM transmission, the average value is zero if each symbol value is equally likely. 

After upconversion, there is no transmit power at the carrier frequency, which makes it difficult 

for the receiver to locate and track the carrier frequency. 
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Problem 5.3 Preprocessing for Carrier Phase Recovery 

Johnson, Sethares & Klein, exercise 10.1, page 198. 

 

In practice, data scramblers (explored in lab #4) are used in a baseband transmitter to break up 

long strings of 0s or 1s so that the occurrence of 0s and 1s are approximately equally likely at the 

scrambler output.  After constellation mapping, upsampling and pulse shaping, the baseband 

transmission is upconverted.  Very little transmit power is at the carrier frequency, and that small 

amount of power is typically buried in noise, which makes it difficult for the receiver to locate 

and track the carrier frequency. 

In the receiver, we can emphasize the frequency content around the carrier frequency by 

applying the right static nonlinearity, such as a squaring block or an absolute value block. The 

nonlinearity will create a harmonic (or multiple harmonics) of the carrier frequency and each 

harmonic will have significant power present.  

The mathematical analysis for two of these cases is worked out in the solution for problem #4 on 

midterm #1 in Spring 2011. This midterm problem concerns downconversion and hence a 

lowpass filter is applied after the static nonlinearity. In this homework problem, we are trying to 

extract information about the received carrier frequency, and hence, we would like to apply the 

appropriate bandpass filter after the static nonlinearity. The analysis of the nonlinearity in the 

frequency domain is the same in both cases.  The solution for problem 1.3 on midterm #1 in 

spring 2010 might also be helpful. 

Consider bandpass transmission m(t) cos(2  f0  t) in which the message signal m(t) is lowpass.  

The spectrum is ½ M(f + f0) + ½ M(f – f0).  We’d like to lock onto f0 by looking for spectral 

content at f0. When the average value of m(t) is zero, i.e. M(0) = 0, the content at the carrier 

frequency is zero.  Next, consider putting the bandpass transmission through a squaring 

operation to obtain m2
(t) cos

2
(2  f0  t).  We’d look for spectral content at frequency 2 f0 because  

cos
2
(2  f0  t) = ½ + ½ cos(2 (2  f0  t)) 

The average value of m2
(t) is much greater than zero even if the average value of m(t) were zero, 

and hence, we’d have significant content at frequency 2 f0.  If the bandpass transmission were 

raised to an odd power n, then the spectral content at frequency n f0 would still be zero. 

You must run "pulrecsig.m" to generate to suppressed carrier signal defined in MATLAB 

variable rsc, and then run "pllpreprocess.m". The Software Receiver Design book describes this.  

The "pulrecsig.m" script generates two upconverted signals. One is a "suppressed carrier" signal 

rsc; i.e., there isn't any power at the carrier frequency. The other is called a "large carrier" signal 

rlc; i.e., there is significant power at the carrier frequency. The "pulrecsign.m" script then uses 

the fast Fourier transform (FFT) to locate the carrier frequency by find the peak in the magnitude 
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spectra of the upconverted signals. The FFT method finds the carrier frequency freqL exactly 

for the large carrier signal and carrier frequency freqS approximately for the suppressed carrier 

signal (with about 3.5% error). The phase offset is computed by using the phase of the FFT at the 

estimated carrier frequency value. The FFT method gives large error in its phase offset estimates.  

a) Try replacing the r2
(t) with |r(t)| in pllpreprocess.m. Does this result in a viable method of 

emphasizing the carrier? 

 

Solution: Replacing r2
(t) by |r(t)| emphasizes the carrier. Notice that 

   tftstr 02cos)()( . Rewriting )(ts  as a sum of its (positive) average value and the 

variation about this average yields )()()( tvtsts
avg

 , which in turn implies that 

         tftvtftstftvtstr
avgavg 000 2cos)(2cos)(2cos )()()( . The term 

  tf02cos  has a period of T0/2 and a fundamental frequency of 2 f0. This results in a 

Fourier series spectrum that is a weighted impulse train at multiples of 2 f0. Since its 

spectrum is discrete, frequencies can be easily separated and the bandpass filter described in 

pllpreprocess.m still works. We plot the spectrum of |r(t)| in the following figure. 

 

b) Try replacing r2
(t) with r3

(t). Does this result in a viable method of emphasizing the carrier? 

 

Solution: Replacing r2
(t) by r3

(t) does not work. We would like to use pre-emphasis because 

the average value of the message m(t) is zero and hence there is no signal power at the carrier 

frequency of the transmitted signal.  The average value of m3
(t) is also zero, and there is no 

energy at f0 or 3 f0.  Note that         tftftf 000

3 32cos
4

1
2cos

4

3
2cos . 

 

On the next page, we plot the spectrum of r3
(t) and see that no distinct tone frequencies are 

present that would enable us to recover the carrier. 
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c) Can you think of other functions that will result in viable methods of emphasizing the 

carrier? 

 

Solution: Another function that works is a fourth-order (fourth-power) nonlinearity and the 

bandpass filter would be centered at either 2 f0 or 4 f0.  There is more signal strength at 2 f0: 

 
Other nonlinear functions will work. We could use exp(x) followed by a bandpass filter 

centered at 2 f0 because exp(x) = 1 + x + (1/2!) x2
 + (1/3!) x3

 + … from its series expansion. 

 

d) Will a linear function work? Why or why not? 

 

Solution: A linear function will not work. A linear function cannot introduce new 

frequencies into the signal, so it is impossible for a linear function to isolate the carrier 

frequency tone. 
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MATLAB Scripts from in Johnson, Sethares and Klein's Software Receiver Design textbook 

The Matlab scripts should run "as is" in MATLAB or LabVIEW Mathscript facility.  

1. Copy the .m files on your computer from the "SRD - MatlabFiles" folder on the CD ROM: 
http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip 

2. Add the folder containing the .m files from the book to the search path.: 

 In MATLAB, use the addpath command 

 In LabVIEW, open the Mathscript window in LabVIEW by going to the Tools menu and 
select "Mathscript Window" (third entry), go the File menu, select "LabVIEW MathScript 
Properties" an d add the path. 

Johnson, Sethares and Klein intentionally chose not to copyright their programs so as to enable 

their widespread dissemination. 
 

 

Discussion of this solution set is available at http://www.youtube.com/watch?v=o6OGrmfBs7I. 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip
http://www.youtube.com/watch?v=o6OGrmfBs7I

