
Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

Spring 2014    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

 

Homework #7 Solutions 

 

Prolog: Problems 7.1 and 7.2 require a maximal length pseudo-noise sequence of length 1023 

bits.  Length 1023 sequence would require 10 stages, i.e. 2
10

 – 1 = 1023.  The following Web site 
recommends a connection polynomial with connections at stages 7 and 10: 

http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr/10stages.txt 
 

Matlab code to generate the maximal length PN sequence of length 1023 using version 4.3 of the 
Communications Toolbox is the following: 

pn1023gen = commsrc.pn('GenPoly',       [10 7 0], ... 
                       'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 
                       'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 
                       'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 
                       'NumBitsOut',    1023); 
pn1023seq = round(2 * generate(pn1023gen) - 1); 

 

We can generate 10 cycles of the maximal length sequence to generate 10,230 values by 

changing the value of NumBitsOut from 1023 to 10230.  (In version 3.5 of the Communications 

Toolbox, commsrc.pn is called seqgen.pn, which has the same arguments.) 

 

7.1 Channel Equalization Using a Least Squares FIR Design. 
Johnson, Sethares & Klein, problem 13.3, on page 279:  

“Use LSequalizer.m to find an equalizer that can open the eye for the channel b= [1 1 -0.8 -0.3 1 

1]. 

a. What equalizer length n is needed? 

b. What delays delta give zero error at the output of the quantizer? 

c. What is the corresponding Jmin? 

d. Plot the frequency response of this channel. 

e. Plot the frequency response of your equalizer. 

f. Calculate and plot the product of the two.” 

 

Changes:  Use a training signal s that is a pseudo-noise sequence of length m=1023 and the 
channel impulse response 

b = [1 0.68 0.54 0.25 0.32 0.42 0.82 0.9]; 

Plot magnitude and phase of the channel frequency response using the freqz command.  The 

equalizer will seek to compensate the magnitude and phase response of the channel so that the 

cascade of the channel and equalizer would give (approximately) an ideal channel of a cascade 

of gain and delay. 

Estimate the computational complexity and memory usage to design the channel equalizer 

coefficients when using a training sequence of m samples and an FIR equalizer of n coefficients. 

 

Solution:  

The following code obtains the smallest equalizer length n and smallest delta required for that n. 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

 
% Prob 13.3 of Johnson, Sethares & Klein 
% Modified from LSequalizer.m 
% LSequalizer.m find a LS equalizer f for the channel b 
  
clear all; close all; clc; 
  
b = [1 0.68 0.54 0.25 0.32 0.42 0.82 0.9];  % define channel 
m=10230;                                % binary source length 
pn1023gen = commsrc.pn('GenPoly',      [10 7 0], ... 
                      'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 
                      'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 
                      'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 
                      'NumBitsOut',    m); 
s=round(2 * generate(pn1023gen) - 1)';  % binary source of length m 
r=filter(b,1,s);                        % output of channel 
 
errmin = 100000; 
Jerrmin = 100000; 
ferrmin = 0; 
nerrmin = 0; 
deltaerrmin = 0; 
  
for n=3:40                              % length of equalizer - 1 
  for delta=1:n                         % use delay <= n * length(b) 
    p=length(r)-delta; 
    R=toeplitz(r(n+1:p),r(n+1:-1:1));   % build matrix R  
    S=s(n+1-delta:p-delta)';          % and vector S 
    f=inv(R'*R)*R'*S;                 % calculate equalizer f 
    Jmin=S'*S-S'*R*inv(R'*R)*R'*S;    % Jmin for this f and delta 
    y=filter(f,1,r);                  % equalizer is a filter 
    dec=sign(y);                      % quantize and find errors 
    err=0.5*sum(abs(dec(delta+1:end)-s(1:end-delta))); 
    if ( err < errmin ) 
      close all; clear h1; 
      errmin = err; 
      Jerrmin = Jmin; 
      ferrmin = f; 
      nerrmin = n; 
      deltaerrmin = delta; 
      figure; 
      [h1,w]=freqz(f,1); 
      freqz(f,1); 
    end 
  end 
end 
% Print results of search for best equalizer length and delay 
nerrmin  
deltaerrmin  
errmin  
Jerrmin  
ferrmin 
figure; [h2,w]=freqz(b,1); 
freqz(b,1); 
  
figure; 
freqz(conv(f,b),1); 
xlabel('Normalized Frequency (rad/sample)'); 
ylabel('Magnitude (dB)'); 
title('Cascade of channel and equalizer'); 
 

(a) An equalizer length of 36 gave the lowest error (i.e. nerrmin was 35). As the number of 

errors approaches zero, the eye is open and the equalizer will function appropriately. 

 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

(b) With an equalizer length of 36, a delay of 17 samples gave zero bit errors. The delay, delta, is 

the combined delay through the channel and the equalizer. A longer equalizer is helpful in 

choosing a delta that is more robust. The equalizer must be long enough to erase the effects of 

the channel, but not too long so as to avoid overmodeling the channel. 

 

(c) Jmin for an equalizer length of 36 coefficients and delay delta of 17 samples is 1393.2. 

 

(d) The frequency response of the channel is plotted below (using freqz): 

 
The channel corrupts the transmitted signal.  The equalizer will have difficulties recovering 

frequencies near the nulls in magnitude response around frequencies 0.2π, 0.5π, and 0.75π 

rad/sample. The channel phase response deviates from linear in small neighborhoods around 

0.2π, 0.5π, and 0.75π rad/sample. 

 

 

(e) The frequency response of the 36-tap equalizer is shown below: 

 
The equalizer passbands are roughly centered at 0.15π, 0.25π, 0.45π, 0.55π, 0.7π, 0.8π and π 

rad/sample. The equalizer phase response is nearly linear, and hence, the equalizer filter 

coefficients are nearly symmetric or nearly anti-symmetric about the midpoint. The equalizer 

design depends on the channel, which is nearly linear in our case.  (This is unusual in practice.) 

 

(f) Here is the frequency response of the cascade of the channel with the equalizer plotted by 

applying freqz to the convolution of impulse responses of the channel and equalizer: 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

  
The cascade of channel and equalizer should pass all frequencies with unity gain and delay the 

transmitted signal by a constant amount. A constant delay corresponds to a linear phase 

response.. A constant fixed delay corresponds to a linear phase response. In this case, the 

equalized channel has a magnitude response that is fairly close to 0 dB (unity gain) except for the 

large dips at 0.2π, 0.5π, 0.75π, and π rad/sample.  The phase response is nearly linear, except for 

the deviations at 0.2π, 0.5π, and 0.75π rad/sample. 

  

Computational Complexity.  For equalizer with n coefficients, training sequence of m samples, 

and fixed delay Δ, computing LS equalizer coefficients is by f=inv(R'*R)*R'*S where R is q x 
(n+1), R’ is (n+1) x q, R' R is (n+1) x (n+1) and S is a q x 1.  Here, q = m + length(b) – Δ – n. 

In this problem, Δ ≤ n, n ≤ 40 and length(b) = 8.  Since m = 10230, we’ll use q ≈ m. 

Vector S is composed of training sequence samples and is m x 1. Matrix R is composed of 

received samples and is m x n.  R’ R takes mn2
 multiplication-accumulate (MAC) operations.  R’ 

S takes mn MACs, the inverse takes 2n3
 MACs, and the final product takes n2

 MACs, for a total 

of mn + n2 + 2n3+ mn2 MACs.  (The matrix inverse is really used here to solve a linear system of 

equations. With vector x known, we rewrite y = A-1 
x as the solution for y in A y = x.  An n by n 

system of linear equations can be solved with 2n 3
 MAC operations, as described by the article 

"Gaussian elimination".) For n = 36 and m = 10000, computational complexity is 13.4 MFLOPS. 

 

7.2 Channel Equalization Using An Adaptive FIR Design.  
Johnson, Sethares & Klein, problem 13.9, on page 289: 

“Use LMSequalizer.m to find an equalizer that can open the eye for the channel b=[1 1 -0.8 -0.3 

1 1]. 

a. What equalizer length n is needed? 

b. What delays delta give zero error in the output of the quantizer? 

c. How does the answer compare with the design in Exercise 13.3?” 

 

Changes:  Use a training signal s that is a pseudo-noise sequence of length m=1023 and the 

channel impulse response 

b = [1 0.68 0.54 0.25 0.32 0.42 0.82 0.9]; 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

Estimate the computational complexity and memory usage to design the channel equalizer 

coefficients when using a training sequence of m samples and an FIR equalizer of n coefficients. 

 

Solution:  I used the following piece of code to obtain the least n and delta required for that n.  
 

% Prob 13.9 of Johnson, Sethares & Klein 
% Modified from LMSequalizer. 
% LMSequalizer.m find a LMS equalizer f for the channel b 
 
clear all; close all; clc; 
 
b = [1 0.68 0.54 0.25 0.32 0.42 0.82 0.9];       % define channel 
m=10230;                               % binary source length 
pn1023gen = commsrc.pn('GenPoly',      [10 7 0], ... 
                      'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 
                      'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 
                      'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 
                      'NumBitsOut',    m); 
s=round(2 * generate(pn1023gen) - 1)'; % binary source of length m 
r=filter(b,1,s);                       % output of channel 
 
errmin = 100000; 
nerrmin = 0; 
deltaerrmin = 0; 
  
for n=3:50 
    for delta=1:n 
        f=zeros(n,1);              % initialize equalizer at 0 
        mu=.002;                   % stepsize  
        for i=n+1:m                % iterate  
            rr=r(i:-1:i-n+1)';     % vector of received signal 
            e=s(i-delta)-f'*rr;    % calculate error 
            f=f+mu*e*rr;           % update equalizer coefficients 
        end 
        y=filter(f,1,r);           % equalizer is a filter 
        dec=sign(y);               % quantization 
 
        err=0.5*sum(abs(dec(delta+1:end)-s(1:end-delta))); 
  
        if (err < errmin) 
            errmin = err; 
            nerrmin = n;   
            deltaerrmin = delta; 
        end 
    end 
end 
 
errmin 
deltaerrmin 
nerrmin 
 

I used a mu (step size) of 0.002 to make the adaptive LMS equalizer converge to give zero bit 

errors over the training sequence. 

 

(a) An equalizer length of 37 gave the lowest error (i.e. nerrmin was 36). As the number of 
errors approaches zero, the eye is open and the equalizer will function appropriately. 

(b) With an adaptive LMS equalizer of length of 37, a delta of 17 samples gave 0 bit errors. A 

longer equalizer is helpful in choosing a delta that is more robust. The equalizer must be long 
enough to erase the effects of the channel. 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

(c) We will compare the two equalizers in several ways. 

Number of bit errors.  Both equalizers gave zero bit errors over the training sequence.  
However, the number of bit errors for the adaptive LMS equalizer depends on mu. 

Transmission delay:  Both the LMS and LS equalizer had zero bit errors when the delay 

through the cascade of the equalizer and channel was 17 samples. The actual delay values to 
minimize the number of bit errors will vary with the channel impulse response. 

Adaptive LMS equalizer frequency response: 

  
The adaptive LMS equalizer frequency response is similar to that of the LS equalizer. 

Equalized channel for adaptive LMS equalizer: 

  
The cascade of channel and equalizer should pass all frequencies with unity gain and delay the 

transmitted signal by a constant amount. A constant delay corresponds to a linear phase response. 

In this case, the equalized channel has a magnitude response that is fairly close to 0 dB (unity 

gain) except for the large dips at 0.2π, 0.5π, 0.75π, and π rad/sample.  The phase response is 

nearly linear, except for the deviations at 0.2π, 0.5π, and 0.75π rad/sample.  

 

Channel tracking. An adaptive LMS equalizer tracks changes in the channel over the training 
sequence, whereas the LS equalizer does not.  Advantage: adaptive LMS equalizer in practice. 

Computational complexity. For an adaptive LMS equalizer, we assume fixed equalizer length 

n, delay Δ and gain g. There are m training samples/iterations. In an iteration, training requires n 

multiplications to compute one output sample of the equalizer, scalar multiplications to compute 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

e[k] and  e[k], multiplication of scalar  e[k] and n equalizer coefficients, and addition of two 

vectors of length n. Training requires (2n+2)m multiply-add operations. The LS equalizer 

requires mn+n2+2n3+mn2 
multiply-adds. Computational complexity is 13.4 MFLOPS for the LS 

equalizer and 0.74 MFLOPS for adaptive LMS equalizer. Advantage: adaptive LMS equalizer. 

Because the LS equalizer performs an inversion of the n x n matrix resulting from the calculation 

of R’R, the LS equalizer must be performed in floating point arithmetic for large values of n (e.g. 

n > 15).  Matrix inversion requires n2
 divisions.  The adaptive LMS equalizer does not require 

any division operations and hence can more easily be implemented in fixed-point arithmetic. 

Memory usage.  The LS equalizer stores matrices R and R’R, and vector S, using mn +n2
+m 

words of memory.  In the adaptive LMS equalizer, only n training signal samples would need to 

be available at a given time.  The algorithm stores three vectors of length n which uses 3n words 

of memory.  For n = 36 and m = 10000, memory usage is 371,396 words for the LS equalizer and 

105 words for the adaptive LMS equalizer.  Memory usage for the LS equalizer is too high to fit 
into on-chip memory for many digital signal processors.  Advantage: adaptive LMS equalizer. 

Summary.  When compared to the LS equalizer, the adaptive LMS (1) has same communication 

performance for a time-invariant channel, (2) has better performance for a time-varying channel 

(as would occur in practice), (3) requires orders of magnitude lower computational complexity 

and memory usage, and (4) can be implemented in fixed-point arithmetic.  The only drawback in 
the adaptive LMS equalizer is the proper choice of the step size. 

The least squares method may have issues in the numeric precision of the inv(R’ R) calculation. 

When re-running problem 7.1 with m = 60, n = 20 and Δ  = 20, the matrix R' R is not full rank.  

It's rank is 20 instead of 21.  Its condition number is 5.4608e+35.  

 

7.3 Automatic Gain Control 
Johnson, Sethares & Klein, problem 6.29, on page 126.  

“Use agcgrad.m to investigate the AGC algorithm. 

a. What range of stepsize mu works? Can the stepsize be too small? Can the stepsize be too 

large? 

b. How does the stepsize mu affect the convergence rate? 

c. How does the variance of the input affect the convergent value of a? 

d. What range of averages lenavg works? Can lenavg be too small? Can lenavg be too large? 

e. How does lenavg affect the convergence rate?” 

 

Changes:  Replace the Gaussian noise signal generated by the randn command with a signal 

that is BPSK (2-PAM) transmission plus Gaussian noise.  For the BPSK transmission, randomly 

generate symbol amplitudes using d = 2; i.e., amplitudes are -1 and +1.  Line 3 in agcgrad.m 
would change as follows: 

r=(sqrt(vr)/sqrt(2))*(randn(n,1) + sign(randn(n,1)));  % generate BPSK plus 

noise 

Plot the error surface using agcerrorsurf.m. with the following definition of r: 

r=randn(n,1) + sign(randn(n,1));  % generate BPSK plus noise 

Describe the error surface and any issues with the initial guess for the gain a. 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

Solution: 

 a) Restrictions exist on mu. First, mu cannot be negative; otherwise the adaptive algorithm will 

be searching for a maximum of the cost function J. To find mu values that work, we plot a few: 

 

 
If the magnitude of mu is too small, values for a will not converge within the 10000 iterations.  

We see the effects at each step of slightly overshooting when mu = 0.01 and greatly overshooting 

when mu = 0.3. The large stepsize sometimes causes the algorithm to overshoot and aim for the 

other local minima (-0.4), which is incorrect. In short, yes, the stepsize for mu can be too small 

or too large, and the adaptive algorithm will fail to converge to the correct gain value. 

b) Within the range of values for mu that work, as mu is increased, the algorithm converges 

much more quickly. A smaller mu will give a smoother but slower convergence. 

 
From the figures, when mu is smaller (0.0005), number of iterations for convergence increases.  

c) Variance corresponds to the dynamic range of the signal. If the variance is too small, the AGC 

should increase the dynamic range, and if the variance is too large, the AGC should attenuate it. 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

 
When the variance is larger (say, 10), the dynamic range of the signal is larger, so the AGC 

converges to a much smaller number, which means the signal is attenuated more. If we take a 
look at the signal before and after the AGC, 

Variance = 0.5          Variance = 10 

 
We can see that the signal with a variance of 10 requires much more aggressive attenuation and, 
therefore, a smaller gain parameter a. 

d) If we plot the AGC parameter using different values for lenavg: 

lenavg between 1 and 100    lenavg = 1000 and 2000 



Course Web site:  http://www.ece.utexas.edu/~bevans/courses/rtdsp 

 
We can see that the value for lenavg is not very important. We should be careful of letting lenavg 

get too large, though, because our input signal is a predetermined length (10000). Therefore, 

there exists an upperbound for the length we can average over and still get a good convergence 

of the AGC parameter. 

e) From the above figure with lenavg between 1 and 100, all good values for lenavg, we can see 

that varying the value of lenavg doesn’t have an effect on the convergence rate.  

 

The error surface plotted to the right shows two 

minima. As long as our initial guess of a is positive, 

we will converge to the correct minimum. 

 

 

 

 

 

 

MATLAB Scripts from in Johnson, Sethares and Klein's Software Receiver Design textbook 

The Matlab scripts should run "as is" in MATLAB or LabVIEW Mathscript facility.  

1. Copy the .m files on your computer from the "SRD - MatlabFiles" folder on the CD ROM: 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip 

2. Add the folder containing the .m files from the book to the search path.: 

 In MATLAB, use the addpath command 

 In LabVIEW, open the Mathscript window in LabVIEW by going to the Tools menu 

and select "Mathscript Window" (third entry), go the File menu, select "LabVIEW 

MathScript Properties" and add the path. 

Johnson, Sethares and Klein intentionally chose not to copyright their programs so as to enable 

their widespread dissemination. 
 

 

Discussion of this solution set will be available online soon. 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/homework/SRD-MatlabFiles.zip

