Embedded digital systems architecture

Edward A. Lee H. John Reekie

Department of EECS U. C. Berkeley

JNIVERSITY OF CALIFORNIA AT BERKELEY

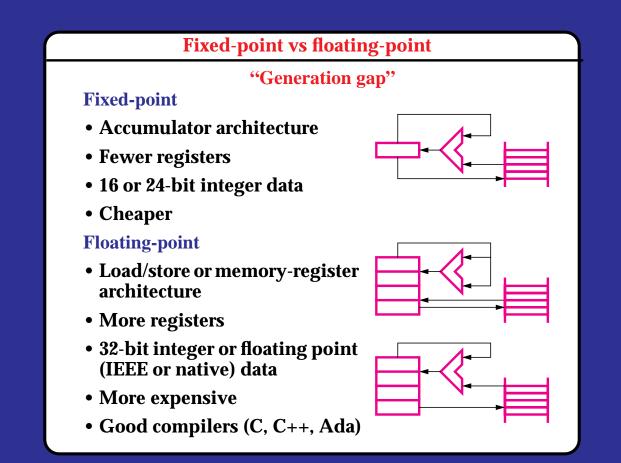
Why not just use a RISC chip?

What is **RISC**?

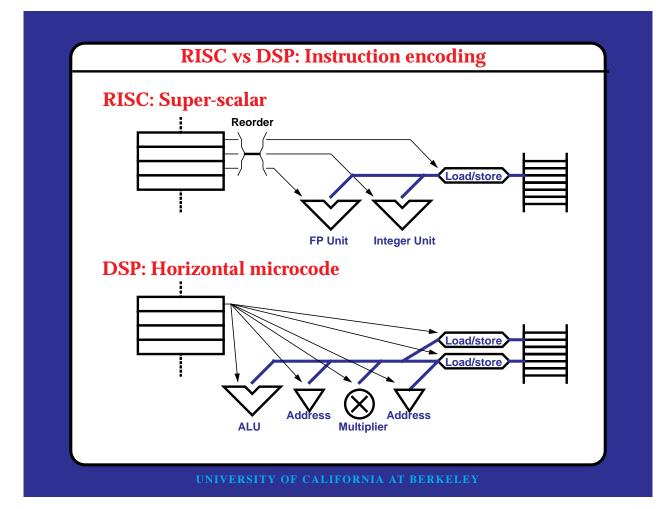
"Any microprocessor architecture designed after 1986."

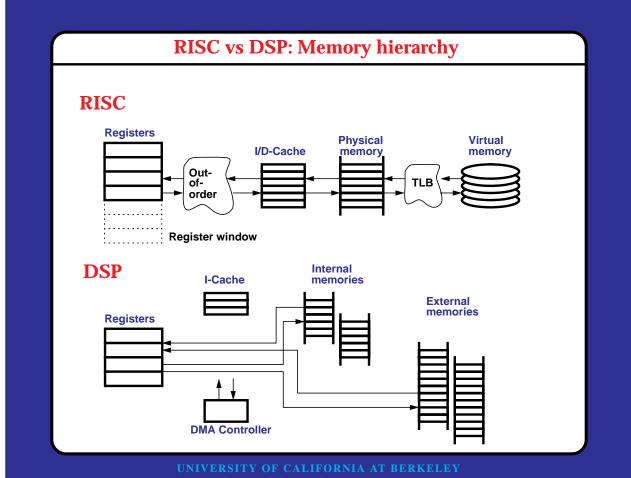
- Load/store architecture
- 32, 64b IEEE fp add, multipy, divide, sqrt
- Elaborate exception handling
- MMU for memory hierarchy
- TLB for virtual memory (also protection)
- "Low power" means about 2 watts (vs. 10)

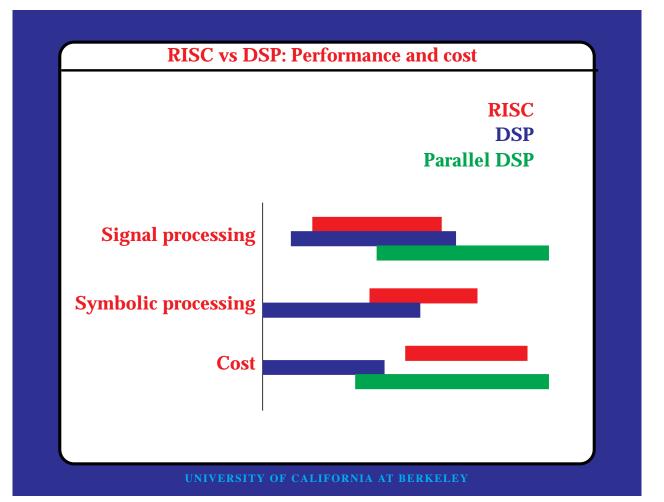
Why use Programmable DSPs?


What is a programmable DSP?

"Any microcomputer still programmed in assembly language"


- Can be small, cheap.
- "Marching band" timing.
- Little or no memory hierarchy
- Low power means 50mW
- Low system cost.




UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY

Addressing Modes				
	TMS320C50	TMS320C30		
 immediate 				
• The operand is part of the instruction	ADD #0FFh	addi 32,r0		
• register				
• The operand is in a specified register	(implied)	addi r1,r0		
• direct				
• The address of the operand is part of the instruction (added to implied memory page)	ADD 010h	addi @count,r0		
 indirect 				
• The address of the operand is stored in a register	ADD *	addi *+ar2(7),r0		
Often used with indexing or pre-/post-decrement		addi *ar2++,r0		

UNIVERSITY OF CALIFORNIA AT BERKELEY

Fixed-point arithmetic				
Decimal:	99.999	99.999		
	+ 9.99	× 9.99		
	= 109.989	= 998.99001		
Binary:	0.111	<mark>0.111</mark>	7/8	
	+ 0.111	× 0.111	7/8	
	= 1.110	= 00.110001	49/64	
		<mark>0.111</mark>	7/8	
Except for one special case, the sign and integer bit are always the same, so a fix-point multiply means:		× 1.000	-8/8	
		= 11.111000	-56/64	
Multiply two		1.000	-8/8	
• Shift 2N-bit product left one bit		× 1.000	-8/8	
Take high-ore	der N bits	= 01.000000		

UNIVERSITY OF CALIFORNIA AT BERKELEY

Some examples of products with prog. DSPs

Company	Product	Description	DSP
Digicom	Various Modems	V.32, V.32bis, V.22bis, Fax	ADSP-21xx
Ericsson	Hotline GH197	GSM digital cellular phone	ADSP-2102
E-mu	Proteus MPS	Music effects	ADSP-2105
Intel	ActionMedia II	DVI product series	ADSP-2105
Peavy Electr.	Spectrum Bass Tone Module	Sound synthesis	ADSP-2105
Peavy Electr.	IDL 1000	Digital delay for audio	ADSP-2105
Sharp	JY-7500 MOD Drive	Magneto optical disk drive (servo loop)	ADSP-2101
Siemens	NNSR	Neural net speech recognizer	ADSP-2111
Xing	VT-Compress	JPEG/MPEG image compression	ADSP-2105