Aliasing

- Aliasing distortion
- Quantization noise
- Bandwidth limitations
- Cost of A/D & D/A conversion
- A 1 Hz Sine wave sampled at 1.8 Hz
- A 0.8 Hz sine wave sampled at 1.8 Hz

Advantages of Digital Systems

Perfect reconstruction of a signal is possible even after severe distortion

Better trade-off between bandwidth and noise immunity

Increase signal-to-noise ratio simply by adding more bits

SNR = -7.2 + 6 dB/bit

Advantages of Digital Systems

Programmability

- Modifiable in the field
- Implement multiple standards
- Better user interfaces
- Tolerance for changes in specifications
- Get better use of hardware for low-speed operations
- Debugging
- User programmability

PAUSE (Space) STOP (Escape)

QUIT

Disadvantages of Digital Systems

Programmability

- Speed is too slow for some applications
- High average power and peak power consumption RISC (2 Watts) vs. DSP (50 mW)

- Aliasing from undersampling
- Clipping from quantization

Analog-to-Digital Conversion

Resampling

Changing the Sampling Rate

Conversion between audio formats

• Speech compression

Video format conversion

Downsampling

Downsampling by M

- Takes in *M* samples and outputs the first sample
- Reduces sampling rate by M
- Time domain

$$y[n] = x[Mn]$$

• Frequency domain

$$Y(\omega) = \sum_{k=0}^{M-1} X\left(\frac{\omega - 2\pi k}{M}\right)$$

- Frequency axis compressed by a factor of M
- *M-1* aliasing vectors

Upsampling

Upsampling by L

- Takes one sample and inserts L-1 zeroes after it
- Increase sampling rate by L
- Time domain

$$y[n] = \begin{cases} x \left[\frac{n}{L} \right] & if \left(\frac{n}{L} \in I \right) \\ 0 & otherwise \end{cases}$$

Frequency domain

$$Y(\omega) = X(L\omega)$$

 Frequency axis expanded by a factor of L

Rational Rate Changers

Change the Sampling Rate by a Factor of L/M

- Rational decimation system
- General structure

- f[n] is a lowpass filter with cutoff frequency $min\left(\frac{\pi}{L}, \frac{\pi}{M}\right)$
- Film to NTSC format requires a 30/24 = 5/4 rate change
- Speech compression from 48 KHz to 8 KHz requires a rate change of 1/6, so there is no upsampler
- What about CD to DAT conversion? 480/441?

Decimation and Interpolation

Decimation

• Anti-aliasing (decimation) filtering before downsampling

• Filter has cutoff frequency of π/M

Interpolation

• Anti-imaging (interpolation) filtering after upsampling

• Filter has cutoff frequency of π/L