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CHAPTER 3

DIGITAL FILTERS

Discrete-Time Convolution

The output y[n] of an LTI system with impulse

response h[n] is related to its input x[n] by

y[n] =

∞
∑

k=−∞

x[k]h[n − k] =

∞
∑

k=−∞

h[k]x[n − k]

The z-Transform of a Convolution

Y (z) =

∞
∑

n=−∞

y[n]z−n = X(z)H(z)
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Sinusoidal Steady-State Response

Input

x[n] = CejωnT

Output

y[n] =

∞
∑

k=−∞

h[k]Cejω(n−k)T

= CejωnT

∞
∑

k=−∞

h[k]e−jωkT

= x[n]H(z)|z=ejωT

Frequency Response

H∗(ω) = H(z)|z=ejωT = A(ω)ejθ(ω)

Amplitude Response

A(ω) = |H∗(ω)| or α(ω) = 20 log10 |H
∗(ω)| dB

Phase Response

θ(ω) = arg H∗(ω)

Notice that they have period ωs = 2π/T .
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The output can be expressed as

y[n] = CA(ω)ej[ωnT+θ(ω)]

When the input is the real sinusoid

x[n] = C cos(ωnT + φ) = <e{CejφejωnT }

the output is

y[n] = <e{H∗(ω)CejφejωnT }

= CA(ω) cos[ωnT + θ(ω) + φ]

Finite Duration Impulse Response

(FIR) Filters

Output of an N -Tap FIR Filter

y[n] =

N−1
∑

k=0

h[k]x[n − k] =

n
∑

k=n−N+1

x[k]h[n − k]
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Type 1 Direct Form Realization
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Design Program

C:\DIGFIL\WINDOW.EXE

21-tap bandpass filter, Passband 1000 - 3000 Hz

ENTER NAME OF LISTING FILE: junk.lst

ENTER FILENAME FOR COEFFICIENTS: junk.cof

ENTER SAMPLING FREQUENCY IN HZ: 8000

WINDOW TYPES

1 RECTANGULAR WINDOW

2 TRIANGULAR WINDOW

3 HAMMING WINDOW

0.54 + 0.46 cos(theta)

4 GENERALIZED HAMMING WINDOW

alpha+ (1-alpha) cos(theta)

5 HANNING WINDOW 0.5 + 0.5 cos(theta)

6 KAISER (I0-SINH) WINDOW

7 CHEBYSHEV WINDOW

FILTER TYPES

1 LOWPASS FILTER

2 HIGHPASS FILTER

3 BANDPASS FILTER

4 BANDSTOP FILTER

5 BANDPASS HILBERT TRANSFORM

6 BANDPASS DIFFERENTIATOR
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ENTER FILTER LENGTH, WINDOW TYPE, FILTER TYPE: 21,3,3

SPECIFY LOWER, UPPER CUTOFF IN HZ: 1000,3000

CREATE (FREQUENCY,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat

LINEAR (L) OR DB (D) SCALE ?: d

Design Program

C:\DIGFIL\REMEZ87.EXE

ENTER LISTING FILENAME: junk.lst

ENTER COEFFICIENT STORAGE FILENAME: junk.cof

LINEAR OR DB AMPLITUDE SCALE FOR PLOTS? (L OR D): d

ENTER SAMPLING FREQUENCY (HZ): 8000

ENTER START AND STOP FREQUENCIES IN HZ FOR

RESPONSE CALCULATION (FSTART,FSTOP): 0,4000

FILTER TYPES AVAILABLE:

1 MULTIPLE PASSBAND/STOPBAND FILTER

2 DIFFERENTIATOR

3 HILBERT TRANSFORM

ENTER: FILTER LENGTH, TYPE, NO. OF BANDS,

GRID DENSITY: 21,1,3,32

ENTER THE BAND EDGES (FREQUENCIES IN HERTZ)

0,500,1000,3000,3500,4000

SPECIAL USER DEFINED AMPLITUDE RESPONSE(Y/N)? n

SPECIAL USER DEFINED WEIGHTING FUNCTION(Y/N)? n
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ENTER (SEPARATED BY COMMAS):

1. VALUE FOR EACH BAND FOR MULTIPLE PASS/STOP

BAND FILTERS

2. SLOPES FOR DIFFERENTIATOR (GAIN = Ki*f ->

SLOPE = Ki

WHERE Ki = SLOPE OF i-TH BAND, f IN HERTZ)

3. MAGNITUDE OF DESIRED VALUE FOR HILBERT TRANSFORM

0,1,0

ENTER WEIGHT FOR EACH BAND. (FOR A DIFFERENTIATOR

THE WEIGHT FUNCTION GENERATED BY THE PROGRAM FOR

THE i th BAND IS WT(i)/f WHERE WT(i) IS THE ENTERED

BAND WEIGHT AND f IS IN HERTZ.)

1,1,1

STARTING REMEZ ITERATIONS

DEVIATION = .159436E-03

.

.

.

CALCULATING IMPULSE RESPONSE

CALCULATING FREQUENCY RESPONSE

CREATE (FREQ,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat
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Using Circular Buffers to Implement FIR

Filters

y[n] =

N−1
∑

k=0

h[k]x[n − k]

= h[0]x[n] + h[1]x[n − 1] + · · · + h[N − 1]x[n − N + 1]

array index filter coefficient circular buffer

array h[] array xcirc[]

0 h[0] x[n − newest]

1 h[1] x[n − newest + 1]

...
...

...

x[n − 1]

newest x[n]

oldest x[n − N + 1]

x[n − N + 2]

..

.
..
.

..

.

N − 2 h[N − 2] x[n − newest − 2]

N − 1 h[N − 1] x[n − newest − 1]
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y[n] =

N−1
∑

k=0

h[k]xcirc[(newest − k) mod N ]

Circular Buffers Using C

A sample code segment for an FIR filter using a circular

buffer for the input sample array is shown below.

main()

{

int x_index = 0;

float y, xcirc[N];

.

.

.

/*--------------------------------------------*/

/* circularly increment newest */

++newest;

if(newest == N) newest = 0;

/*-------------------------------------------*/

/* Put new sample in delay line. */

xcirc[newest] = newsample;

/*-------------------------------------------*/

/* Do convolution sum */

Go on to the next slide
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Circular Buffer in C (cont.)

y = 0;

x_index = newest

for (k = 0; k < N; k++)

{

y += h[k]*xcirc[x_index];

/*-------------------------------------*/

/* circularly decrement x_index */

--x_index;

if(x_index == -1) x_index = N-1;

/*-------------------------------------*/

}

...

}

Warning: DSK6713 AIC23 read() and MCBSP read()

each return a 32-bit unsigned int. Convert the returned

value to an int before shifting right 16 bits to knock off the

right channel and get the left channel with sign extension.

Shifting an unsigned int right fills the MSB’s with 0’s so

the sign is not extended.

Note: C has the mod operator, %, but its implementation

by the compiler is very inefficient because the compiler

must account for all general cases. Therefore, you should

implement the mod operation as shown in the code sement

above.
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Chapter 3, Experiment 1
FIR Filter Using C

Perform the following tasks for an FIR filter using a

circular buffer and C:

1. Initialize McBSP0, McBSP1, and the AIC23

codec as before and set the sampling rate to

16000 Hz.

2. Measure the amplitude response of the DSK left

channel analog path. We will assume the right

channel is the same. Apply a sine wave from the

signal generator to the left channel of the line

input and loop the samples internally in the DSP

back to the line output. Vary the frequency and

record the values of the output amplitude divided

by the input amplitude. Use enough frequencies

to get an accurate plot of the response. In

particular, be sure to use enough points in the

transition region from the passband to the

stopband. Plot the response using your favorite

plotting program. You should use the set of

frequencies chosen here in the rest of Chapter 3.
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Experiment 3.1 (cont. 1)

3. Design a 25-tap bandpass FIR filter for a

sampling rate of 16 kHz using WINDOW.EXE,

REMEZ87.EXE, or MATLAB. The passband

should extend from 2,000 Hz to 5,000 Hz. Plot

the theoretical amplitude response in dB.

4. Write a C program to implement the filter using a

circular sample buffer. Convert the input samples

to floating point format before putting them into

the circular buffer. The left channel is the upper

16 bits. So, arithmetically shift the received word

16 bits right to extend the sign and lop off the

lower 16 bits (right DAC channel) and then

convert the result to a float.

The start of each iteration should be controlled

by synchronizing it to the McBSP1 XRDY flag.

Each time a sample is transmitted, a new input

sample can be read because the transmit and

receive frame syncs are identical.
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Experiment 3.1 (cont. 2)

5. First compile your program without optimization.

Look at the assembly code generated by the compiler

to get some idea of how the C source code is

implemented by the ’C6713. Use the profiling

capabilities of Code Composer Studio to measure the

number of cycles required to generate one output

sample. (Do not include the time spent polling the

XRDY flag!)

6. Browse through Chapter 3 Optimizing Your Code in

the TMS320C6000 Optimizing Compiler User’s

Guide, SPRU1871. Then compile your program using

the four optimization levels o0, o1, o2, and o3. Look

at the assembly code generated for each optimization

level. Measure and record the number of cycles

required to generate one output sample for each

optimization level.

7. Measure the amplitude response of the filtering

system from the line input to line output jack and

plot the results on a dB scale after correcting for the

EVM response. Compare your measured result with

the theoretical response.

8. Increase the number of filter taps from 25 to find the

largest number of taps that can be used without

running out of time and report the result.
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Circular Buffers Using the

TMS320C6713 Hardware

The TMS320C6000 family of DSP’s has built-in

hardware capability for circular buffers.

• The eight registers, A4–A7 and B4–B7, can

be used for linear or circular indirect

addressing.

• The Address Mode Register (AMR) contains

2-bit fields shown in the figure on Slide 3-15

for each register that determine the address

modes as shown in the table on Slide 3-15.

• Then number of words in the buffer is called

the block size. The block size is determined

by either the BK0 or BK1 5-bit fields in the

AMR. The choice between them is

determined by the 2-bit mode fields.
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Circular Buffers Using the

TMS320C6713 Hardware (cont. 1)

• Let Nblock be the value of the BK0 or BK1

field. Then the circular buffer has the size

BUF LEN = 2Nblock+1 bytes. So, the circular

buffer size can only be a power of 2 bytes.

Address Mode Register (AMR) Fields

31 26 25 21 20 16 15 14 13 12 11 10

Resvd BK1 BK0 B7 mode B6 mode B5 mode

9 8 7 6 5 4 3 2 1 0

B4 mode A7 mode A6 mode A5 mode A4 mode

AMR Mode Field Encoding

Mode Addressing Option

00 Linear Mode

01 Circular Mode Using BK0 Size

10 Circular Mode Using BK1 Size

11 Reserved
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Circular Buffers Using the

TMS320C6713 Hardware (cont. 2)

• The buffer must be aligned on a byte

boundary that is a multiple of the block size

BUF LEN. Therefore, the Nblock+1 lsb’s of

the buffer base address must all be 0. This

can be done in a C program by using the

DATA ALIGN pragma. Suppose the buffer is

an array x[ ]. The alignment command is:

#pragma DATA_ALIGN(x, BUF_LEN)

The array x[ ] must be a global array.

It can also be done by creating a named

section in the assembly program and using

the linker to align the section properly.

How the Circular Buffer is Implemented

Circular addressing is implemented by inhibiting

carries or borrows between bits Nblock and

Nblock+1 in the address calculations. Therefore,

bits Nblock+1 through 31 do not change as the

address is incremented or decremented by an

amount less than the buffer size.
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Indirect Addressing Through

Registers

Hardware circular addressing cannot be

performed in C. It must be carried out by

assembly instructions. Circular addressing is

accomplished by indirect addressing through one

of the eight allowed registers using the

auto-increment/decrement and indexed modes.

A typical circular buffering instruction is

LDW *A5--, A8

where the A5 field in the AMR has been set for

circular addressing. LDW is the mnemonic for

“load a word.” The word is loaded into the

destination register A8 from the address pointed

to by A5 and the address is decremented by 4

bytes according the mode in the AMR after being

used (post decremented).
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Writing in C vs. Assembly

Because of the tremendous advances in DSP hardware

capabilities and software code generation tools, it is

becoming standard practice to implement applications

almost entirely in a higher level language like C. Some

advantages are:

• Rapid software development using a high level

language.

• Can use powerful optimizing compilers.

• Application can be easily ported to different

DSP’s.

• Profiling tools can find time intensive code

segments which can then be written in optimized

assembly code.

Generating efficient assembly code for the ’C6000

family by hand is very difficult because:

• there are the multiple execution units

• there is a multi-level pipeline

• different instructions take different times to

execute
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Calling Assembly Functions from C

“A” Side Register Usage

Preserved

Register By Special Uses

A0 Parent

A1 Parent

A2 Parent

A3 Parent Structure register

A4 Parent Argument 1 or return value

A5 Parent Argument 1 or return value

with A4 for doubles and longs

A6 Parent Argument 3

A7 Parent Argument 3 with A6 for

doubles and longs

A8 Parent Argument 5

A9 Parent Argument 5 with A8 for

doubles and longs

A10 Child Argument 7

A11 Child Agument 7 with A10 for

doubles and longs

A12 Child Argument 9

A13 Child Argument 9 with A12 for

doubles and longs

A14 Child

A15 Child Frame pointer (FP)
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Calling Assembly Functions from C

“B” Side Register Usage

Preserved

Register By Special Uses

B0 Parent

B1 Parent

B2 Parent

B3 Parent Return address

B4 Parent Argument 2

B5 Parent Argument 2 with B4 for

doubles and longs

B6 Parent Argument 4

B7 Parent Argument 4 with B6 for

doubles and longs

B8 Parent Argument 6

B9 Parent Argument 6 with B8 for

doubles and longs

B10 Child Argument 8

B11 Child Agument 8 with B10 for

doubles and longs

B12 Child Argument 10

B13 Child Argument 10 with B12 for

doubles and longs

B14 Child Data page pointer (DP)

B15 Child Stack pointer (SP)
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How a Function Makes a Call

1. Passed arguments are placed in registers or

on the stack. By convention, argument 1 is

the left most argument.

• The first ten arguments are passed in A

and B registers as shown in Slides 3-19

and 3-20

• Additional arguments are passed on the

stack.

2. The calling function (parent) must save A0

through A9 and B0 through B9 if needed

after the call, by pushing them on the stack.

3. The caller branches to the function (child).

4. Upon returning, the caller reclaims stack

space used for arguments.

See: TMS320C6000 Optimizing Compiler User’s

Guide, SPRU1871, Sections 8.4 and 8.5 for complete

details.
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How a Called Function Responds

1. The called function allocates space on the stack

for local variables, temporary storage, and

arguments to functions this function might call.

The frame pointer (FP) is used to access

arguments on the stack.

2. If the called function calls another, the return

address must be saved on the stack. Otherwise it

is left in B3.

3. If the called function modifies A10 through A15

or B10 through B15, it must save them in other

registers or on the stack.

4. The called function code is executed.

5. The called function returns an int, float, or

pointer in A4. Double or long double are returned

in the A5:A4 pair.

6. A10–A15 and B10–B15 are restored if used.

7. The frame and stack pointers are restored.

8. The function returns by branching to the value in

B3.
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Using Assembly Functions with C

• C variable names are prefixed with an

underscore by the compiler when generating

assembly code. For example, a C variable

named x is called _x in the assembly code.

• The caller must put the arguments in the

proper registers or on the stack for arguments

beyond number 10.

• A10–A15 and B10–B15, B3 and, possibly, A3

must be preserved. You can use all other

registers freely.

• You must pop everything you pushed on the

stack before returning to the caller.

• Any object or function declared in the

assembly function that is accessed or called

from C must be declared with a .def or

.global directive in the assembly code. This

allows the linker to resolve references to it.
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Linear Assembly Code and the

Assembly Optimizer

Writing efficient assembly code is difficult. The TI

code generation tools allow you to write in a language

called linear assembly code which is very similar to

full assembly code. Linear assembly files should be

given the extension .sa. Linear assembly code does

not include information about parallel instructions,

instruction latencies, or register usage.

Symbolic names can be used for registers. The

assembly optimizer operates on linear assembly files.

The tasks it performs include:

• finding instructions that can operate in parallel

• handling pipeline latencies

• assigning register usage

• defining which units to use

• optimizing execution time by software pipelining

• creating entry and exit assembly code for

functions to be called by C.
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Linear Assembly Code and the

Assembly Optimizer (cont. 1)

See the following two references for complete

details on linear assembly code and how to use

the assembly optimizer and interpret its

diagnostic reports.

• TMS320C6000 Optimizing Compiler User’s

Guide, SPRU187I, Chapter 4.

• TMS320C6000 Programmer’s Guide,

SPRU198F.

An example of a C-callable linear assembly

function for performing one convolution iteration

using a hardware circular sample buffer is shown

in Slides 3-28 through 3-31. A C-callable linear

assembly function must

• declare its entry point to be global

• include .cproc and .endproc directives to

mark the assembly code region to be

optimized.
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Linear Assembly Code and the

Assembly Optimizer (cont. 2)

As an example, you will find the following lines in
convol1.sa

.global _convolve

_convolve .cproc x_addr, h_addr, Nh, Nblock, newest

.reg sum, prod, x_value, h_value

.

.

.

.return sum ; By C convention, put sum in A4

.endproc

• The entry point is _convolve.

• The names following .cproc are the

function’s arguments.

• The .reg line lists symbolic variable names

that the assembly optimizer should assign to

registers or the stack, if necessary.

• The .return directive causes the assembly

optimizer to return sum to the caller by

putting it in A4.
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Invoking the Assembly Optimizer

The linear assembly file can be processed by the

assembly optimizer by using the command

prompt shell command

cl6x -mv6710 -o3 -k convol1.sa

• -mv6710 specifies the floating-point DSP

series

• -o3 specifies optimization level 3. The 3 can

be replaced by 0, 1, or 2. The -o option can

be left out for no optimization.

• -k specifies that the .asm output file should

be kept

You can also use Code Composer Studio to

process the file by including it in your project. Set

options by clicking on Project and then Options.

Then select the Compiler tab and set the desired

optimization level. Under Compiler -> Basic,

set the Target Version to 671x (-mv6710).
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A Simple Linear Assembly Convolution

Function that can be Called from C

;******************************************************

; File: convol1.sa

; By: S.A. Tretter

;

; Compile using

;

; cl6x -mv6713 -o3 convol1.sa

;

; or by using Code Composer Studio with these options.

;

; This is a C callable assembly function for computing

; one convolution iteration. The circular buffering

; hardware of the C6000 is used. The function

; prototype is:

;

; extern float convolve( float x[ ], float h[ ], int Nh,

; int Nblock, int newest );

;

; x[ ] circular input sample buffer

; h[ ] FIR filter coefficients

; Nh number of filter taps

; Nblock circular buffer size in bytes is

; 2^{Nblock+1} and in words is 2^{Nblock-1}

; newest index pointing to newest sample in buffer
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convol1.sa (cont. 1)
; According to the TI C Compiler conventions, the

; arguments on entry are found in the following

; registers:

;

; &x[0] A4

; &h[0] B4

; Nh A6

; Nblock B6

; newest A8

;

; WARNING: The C calling function must align the

; circular buffer, x[ ], on a boundary that is a

; multiple of the buffer size in bytes, that is, a

; multiple of BUF_LEN = 2^{Nblock+1} bytes. This can

; be done by a statement in the C program of the form

; #pragma DATA_ALIGN(x, BUF_LEN)

; Note: x[] must be a global array.

;********************************************************

.global _convolve

_convolve .cproc x_addr, h_addr, Nh, Nblock, newest

.reg sum, prod, x_value, h_value

; Compute address of x[newest] and put in x_addr

; Note: The instruction ADDAW shifts the second argument,

; newest, left 2 bits, i.e., multiplies it by 4,

; before adding it to the first argument to form

; the actual byte address of x[newest].

ADDAW x_addr, newest, x_addr ; &x[newest]
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convol1.sa (cont. 2)
;-------------------------------------------------------

; Set up circular addressing

; Load Nblock into the BK0 field of the Address Mode

; Register (AMR)

SHL Nblock, 16, Nblock ; Shift Nblock to BK0 field

; Note: The assembly optimizer will assign x_addr to

; some register it likes. You will have to

; manually look at the assembled and optimized

; code to see which register it picked and then

; set up the circular mode using BK0 by writing

; 01 to the field for that register in AMR.

; The assembler will give you a warning that

; changing the AMR can give unpredicatable

; results but you can ignore this.

;

; Suppose B4 was chosen by the optimizer.

;

set Nblock, 8,8, Nblock; Set mode circular, BK0, B4

; set Nblock, 10,10, Nblock; Use this for B5.

MVC Nblock, AMR ; load mode into AMR

;-------------------------------------------------------

; Clear convolution sum registers

ZERO sum
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convol1.sa (cont. 3)

; Now compute the convolution sum.

loop: .trip 8, 500 ; assume between 8 and 500 taps

LDW *x_addr--, x_value ; x[newest-k] -> x_value

LDW *h_addr++, h_value ; h[k] -> h_value

MPYSP x_value, h_value, prod ; h[k]*x[n-k]

ADDSP prod, sum, sum ; sum of products

[Nh] SUB Nh, 1, Nh ; Decrement count by 1 tap

[Nh] B loop ; Continue until all taps computed

.return sum ; By C convention, put sum in A4

.endproc
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Part of Assembly Optimizer Output for No

Optimization
.asg A15, FP

.asg B14, DP

.asg B15, SP

.global _convolve

.sect ".text"

;******************************************************************************

;* FUNCTION NAME: _convolve *

;* *

;* Regs Modified : A0,A3,A4,B0,B4,B5,B6 *

;* Regs Used : A0,A3,A4,A6,A8,B0,B3,B4,B5,B6 *

;******************************************************************************

_convolve:

; .reg sum, prod, x_value, h_value

MV .S2X A8,B5 ; |47|

MV .S2X A4,B4 ; |47|

|| MV .S1X B4,A0 ; |47|

MV .S2X A6,B0 ; |47|

.line 10

ADDAW .D2 B4,B5,B4 ; |56| &x[newest]

.line 17

SHL .S2 B6,0x10,B6 ; |63| Shift Nblock to BK0 field

.line 31

SET .S2 B6,0x8,0x8,B6 ; |77| Set mode circular, BK0, B4

.line 33

MVC .S2 B6,AMR ; |79| load mode into AMR

NOP 1

.line 38

ZERO .D1 A4 ; |84|

.line 42
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Part of Assembly Optimizer Output for No

Optimization (cont.)
loop:

.line 43

LDW .D2T2 *B4--,B5 ; |89| x[newest-k] -> x_value

NOP 4

.line 44

LDW .D1T1 *A0++,A3 ; |90| h[k] -> h_value

NOP 4

.line 45

MPYSP .M1X B5,A3,A3 ; |91| h[k]*x[n-k]

NOP 3

.line 46

ADDSP .L1 A3,A4,A4 ; |92| sum of products

NOP 3

.line 48

[ B0] ADD .D2 0xffffffff,B0,B0 ; |94| Decrement count by 1 tap

.line 49

[ B0] B .S1 loop ; |95| Continue until done

NOP 5

; BRANCH OCCURS ; |95|

;** --------------------------------------------------------------------------*

.line 51

.line 52

B .S2 B3 ; |98|

NOP 5

; BRANCH OCCURS ; |98|

.endfunc 98,000000000h,0

3-33



'

&

$

%

Part of Assembly Optimizer Output for -o3

Optimization
.asg A15, FP

.asg B14, DP

.asg B15, SP

.global _convolve

.sect ‘‘.text’’

;******************************************************************************

;* FUNCTION NAME: _convolve *

;* *

;* Regs Modified : A0,A1,A2,A3,A4,A5,B0,B4,B5 *

;* Regs Used : A0,A1,A2,A3,A4,A5,A6,A8,B0,B3,B4,B5,B6 *

;******************************************************************************

_convolve:

;*----------------------------------------------------------------------------*

;* SOFTWARE PIPELINE INFORMATION

;*

;* Loop label : loop

;* Known Minimum Trip Count : 8

;* Known Maximum Trip Count : 500

;* Known Max Trip Count Factor : 1

;* Loop Carried Dependency Bound(^) : 4

;* Unpartitioned Resource Bound : 1

;* Partitioned Resource Bound(*) : 1

;* Resource Partition:

;* A-side B-side

;* .L units 1* 0

;* .S units 0 1*

;* .D units 1* 1*

;* .M units 1* 0

;* .X cross paths 1* 0

;* .T address paths 1* 1*

;* Long read paths 0 0

;* Long write paths 0 0

;* Logical ops (.LS) 0 0 (.L or .S unit)

;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)

;* Bound(.L .S .LS) 1* 1*

;* Bound(.L .S .D .LS .LSD) 1* 1*

;*
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Part of Assembly Optimizer Output for -o3

Optimization (cont.1)
;* Searching for software pipeline schedule at ...

;* ii = 4 Schedule found with 4 iterations in parallel

;* done

;*

;* Epilog not entirely removed

;* Collapsed epilog stages : 2

;*

;* Prolog not entirely removed

;* Collapsed prolog stages : 2

;*

;* Minimum required memory pad : 0 bytes

;*

;* For further improvement on this loop, try option -mh8

;*

;* Minimum safe trip count : 1

;*----------------------------------------------------------------------------*

L1: ; PIPED LOOP PROLOG

NOP 1

MV .S2X A6,B0

MV .S2X A8,B5

MV .S2X A4,B4

|| MV .S1X B4,A4

.line 10

ADDAW .D2 B4,B5,B5 ; |56| &x[newest]

.line 17

SHL .S2 B6,0x10,B4 ; |63| Shift Nblock to BK0 field

.line 31

SET .S2 B4,0x8,0x8,B4 ; |77| Set mode circular, BK0, B4

.line 33

MVC .S2 B4,AMR ; |79| load mode into AMR

.line 38

NOP 1

ZERO .D1 A3 ; |84|

.line 42
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Part of Assembly Optimizer Output for -o3

Optimization (cont.2)
MV .D2 B5,B4

|| B .S2 loop ; (P) |95| Continue until done

SUB .L1X B0,1,A1

|| MVK .S1 0x2,A2 ; init prolog collapse predicate

|| LDW .D2T2 *B4--,B5 ; (P) |89| x[newest-k] -> x_value

|| LDW .D1T1 *A4++,A5 ; (P) |90| h[k] -> h_value

;** --------------------------------------------------------------------------*

loop: ; PIPED LOOP KERNEL

[!A2] ADDSP .L1 A0,A3,A3 ; ^ |92| sum of products

|| MPYSP .M1X B5,A5,A0 ; @|91| h[k]*x[n-k]

[ B0] ADD .D2 0xffffffff,B0,B0 ; @|94| Decrement count by 1 tap

[ A2] SUB .D1 A2,1,A2 ;

|| [ B0] B .S2 loop ; @|95| Continue until done

[ A1] SUB .S1 A1,1,A1 ;

|| [ A1] LDW .D2T2 *B4--,B5 ; @@@|89| x[newest-k] -> x_value

|| [ A1] LDW .D1T1 *A4++,A5 ; @@@|90| h[k] -> h_value

;** --------------------------------------------------------------------------*

L3: ; PIPED LOOP EPILOG

ADDSP .L1 A0,A3,A3 ; (E) @@@ ^ |92| sum of products

.line 52

.line 51

B .S2 B3 ; |98|

NOP 2

MV .D1 A3,A4 ; |97|

NOP 2

; BRANCH OCCURS ; |98|

.endfunc 98,000000000h,0
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Segment of a C Program for Calling the

.asm Convolution Function

Suppose we want to do an Nh = 25 tap filter. The

circular buffer must be 32 words or

BUF LEN = 4 × 32 = 128 bytes. Since

BUF LEN = 2Nblock+1, we need Nblock = 6.

...

#define Nh 25 /* number of filter taps*/

#define Nblock 6 /*length field in AMR */

#define BUF_LEN 1<<(Nblock+1) /* circular buffer */

/* size in bytes */

#define BUF_LEN_WORDS 1<<(Nblock-1) /* BUF_LEN/4 */

/*** NOTE: x[ ] must be a global array *******/

float x[BUF_LEN_WORDS]; /* circular buffer */

/* Align circ. buf. on multiple of block length */

#pragma DATA_ALIGN(x, BUF_LEN)

...

main(){

...

int newest = 0; /* Input pointer for buffer */

float y = 0; /* filter output sample */

int iy = 0; /* int output for codec */

int ix; /* new input sample */

float h[Nh] = { Put your filter coefficients here

separated by commas };
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Segment of a C Program for Calling the

.asm Convolution Function (cont.)

/* Prototype the convolution function. */

extern float convolve(float x[], float h[],

int N_taps, int N_block, int newest);

/* Configure McBSP’s and codec */

...

for(;;){

/* Send last filter output to codec. */

while(!DSK6713_AIC23_write(hCodec, iy));

/* NOTE: DSK6713_AIC23_read() returns unsigned int.*/

/* Convert returned value to an ‘‘int’’ before */

/* shifting right to extend sign. */

/* Get new sample and make it an int. */

while(!DSK6713_AIC23_read(hCodec, &ix));

ix = ix >> 16;/* Extend sign. Eliminate the */

/* right channel (16 LSB’s). */

newest++; /* Increment input pointer */

if(newest==BUF_LEN_WORDS) newest = 0;

/* Reduce modulo buffer size, */

x[newest] = ix; /* Put new sample in buffer */

y = convolve(x, h, Nh, Nblock, newest);

iy = ( (int) y) << 16;

}
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Chapter 3, Experiment 2
FIR Filter Using C and Assembly

Perform the following tasks for a C program that

calls an assembly convolution routine:

1. Complete the C program that calls the

assembly function convolve() in the file

convol1.sa. Use the 25-tap filter you

designed for Experiment 3.1.

2. Build the complete executable module using

level -o3 optimization for both the C and

linear assembly programs.

3. Attach the signal generator to the input jack

and observe the output on the oscilloscope.

Sweep the input frequency to check that the

frequency response is correct. You do not

have to do a detailed frequency response

measurement.

Note: You may have to click on Debug →

Reset CPU to get the program to run properly.
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Chapter 3, Experiment 2
FIR Filter Using C and Assembly (cont. 1)

4. Use the profiling capabilites of Code

Composer Studio to measure the number of

cycles required for one call to the convolution

function with and without optimization.

Compare the results to those for the

Experiment 3.1 implementation totally in C.

5. Get the file convolve.sa from our web site.

It unrolls the convolution sum loop once to

compute the contributions from two taps in

each iteration of the summation loop. The

number of filter taps must be an even number.

However, a filter with an odd number of taps

can be implemented by adding one dummy

tap which is zero. The idea is to improve

efficiency by eliminating branching overhead

and by allowing the optimizer to schedule use

of the execution units more optimally.
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Experiment 3.2
FIR Filter Using C and Assembly (cont. 2)

Rebuild your FIR filter implementation using

this new assembly function and level -o3

optimization. Compare the execution time for

one call this convolution routine with that of

the function in convol1.sa

The variable, ii, reported by the assembly

optimizer indicates the number of cycles

required by the convolution loop kernel. With

level -o2 or -o3 optimization it reports ii = 4

for convol1.sa and convolve.sa, and that 4

instructions are executing in parallel.

Therefore, the kernel for convol1.sa requires

4 cycles per tap while the kernel for

convolve.sa requires only 2 cycles per tap.

Notice the convol1.asm only uses multiplier

.M1 while convolve.asm use both .M1 and

.M2.
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Infinite Duration Impulse Response

(IIR) Filters

Transfer Function

H(z) =
b0 + b1z

−1 + b2z
−2 + · · · + bNz−N

1 + a1z−1 + a2z−2 + · · · + aMz−M

=
B(z)

A(z)

Type 0 Direct Form Realization

Y (z)

X(z)
= H(z) =

B(z)

A(z)

Cross multiplying gives

Y (z)A(z) = X(z)B(z)

Y (z)

(

1 +

M
∑

k=1

akz−k

)

= X(z)

N
∑

k=0

bkz−k
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IIR Filters (cont. 1)

Y (z) =

N
∑

k=0

bkX(z)z−k −

M
∑

k=1

akY (z)z−k

Time domain equivalent is the difference equation

y[n] =

N
∑

k=0

bkx[n − k] −

M
∑

k=1

aky[n − k]

It is called a direct form because the coefficients

in the transfer function appear directly in the

difference equation.

It is called a recursive filter because past outputs

as well as the present and N past inputs are used

in computing the current output.

The filter requires N + M + 1 storage elements for

x(n), . . . , x(n − N) and y(n − 1), . . . , y(n − M).
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Type 1 Direct Form Realization

-

1

A(z)
- B(z) -

X(z) V (z) Y (z)

V (z) = X(z)
1

A(z)

Y (z) =
X(z)

A(z)
B(z) = V (z)B(z)

Use the direct form 0 realization to compute:

v[n] = x[n] −

M
∑

k=1

akv[n − k]

Then, the output can be computed as

y[n] =

N
∑

k=0

bkv[n − k]
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Type 1 Direct Form Realization

����
����
����
����

����
����
����
����- - -?

?
? 6
? 6

6
6-

-
-�

�
�
66
6
6

6 6

z�1
z�1
z�1

x[n] v[n] y[n]
�a1
�a2
�aN�1
�aN

...

+
+
+ +
+

+
+
+

b1
b2s2[n]

sN [n]

s1[n]
bN�1
bN

b0

sN�1[n]
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Computing the Direct Form 1

Output

Step 1: Compute v[n]

v[n] = x[n] −

N
∑

k=1

aksk[n]

Step 2: Compute the output y[n]

y[n] = b0v[n] +

N
∑

k=1

bksk[n]

Step 3: Update the state variables

sN [n + 1] = sN−1[n]

sN−1[n + 1] = sN−2[n]

...

s2[n + 1] = s1[n]

s1[n + 1] = v[n]
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Type 2 Direct Form Realization

Let M = N . Then

N
∑

k=0

akz−kY (z) =

N
∑

k=0

bkz−kX(z)

with a0 = 1.

Taking everything except Y (z) to right-hand side

gives

Y (z) = b0X(z) +

N
∑

k=1

[bkX(z) − akY (z)]z−k

This is the key equation for the type 2 direct form

realization shown in the following figure.
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Type 2 Direct Form Realization-Æ
��+z�1z�1
Æ
��z�1
Æ
��

Æ
��
z�1

-
- �
- �
- �

6

66
66
66

x[n] y[n]b0
b1
b2
bN

�a1
�a2
�aN

+
+
+

s1[n]
s2[n]
sN [n]
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Computing the Direct Form 2

Output

Step 1: Compute the output y[n]

y[n] = b0x[n] + s1[n]

Step 2: Update the state variables

s1[n + 1] = b1x[n] − a1y[n] + s2[n]

s2[n + 1] = b2x[n] − a2y[n] + s3[n]

...

sN−1[n + 1] = bN−1x[n] − aN−1y[n] + sN [n]

sN [n + 1] = bNx[n] − aNy[n]
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A Program for Designing IIR Filters

C:\DIGFIL\IIR\IIR.EXE

Uses the bilinear transformation with a

Butterworth, Chebyshev, inverse Chebyshev, or

elliptic analog prototype filter.

It can design lowpass, highpass, bandpass, or

bandstop filters.

The form of the resulting filter is a cascade

(product) of sections, each with a second order

numerator and denominator with the leading

constant terms normalized to 1, possibly a first

order section normalized in the same way, and an

overall scale factor. These second order sections

are also know as biquads.
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IIR Filter Design Example

Design a bandpass filter based on an elliptic analog

prototype filter.

The nominal lower stopband extends from 0 to 600 Hz.

The passband extends from 1000 to 2000 Hz.

The upper stopband extends from 3000 to 4000 Hz.

SAVE RESULTS IN A FILE (Y OR N): y

ENTER LISTING FILENAME: junk.lst

ENTER 1 FOR ANALOG, 2 FOR DIGITAL: 2

ENTER SAMPLING RATE IN HZ: 8000

ENTER NUMBER OF FREQS TO DISPLAY: 100

ENTER STARTING FREQUENCY IN HZ: 0

ENTER STOPPING FREQUENCY IN HZ: 4000

ENTER 1 FOR BW, 2 FOR CHEBY, 3 FOR ICHEBY,

4 FOR ELLIPTIC: 4
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IIR Filter Design Example (cont.)

ENTER 1 FOR LOWPASS, 2 FOR HP, 3 FOR BP,

OR 4 FOR BR: 3

ENTER F1,F2,F3,F4 FOR BP OR BR FREQS:

600,1000,2000,3000

ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION

IN +DB: 0.2,40

ELLIPTIC FILTER ORDER = 4

CREATE FREQ, LINEAR GAIN FILE (Y,N)? n

CREATE FREQ, DB GAIN FILE (Y,N)? Y

ENTER FILENAME: junkdb.dat

CREATE FREQ, PHASE FILE (Y,N)? n

CREATE FREQ, DELAY FILE (Y,N)? y

ENTER FILENAME: JUNKDEL.DAT

Note: F1 < F2 < F3 < F4

F1 = upper edge of lower stopband

F2 = lower edge of passband

F3 = upper edge of passband

F4 = lower edge of upper stopband
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Sample Output Listing from IIR.EXE

DIGITAL BANDPASS ELLIPTIC FILTER

FILTER ORDER = 8

Z PLANE

ZEROS POLES

.977149 +- j .212554 .173365 +- j .761580

.902015 +- j .431705 -.028463 +- j .919833

-.538154 +- j .842847 .683010 +- j .651915

-.873779 +- j .486323 .482595 +- j .656484

RADIUS FREQUENCY RADIUS FREQUENCY

.100000E+01 .272712E+03 .781063E+00 .171502E+04

.100000E+01 .568352E+03 .920273E+00 .203939E+04

.100000E+01 .272351E+04 .944190E+00 .970348E+03

.100000E+01 .335335E+04 .814782E+00 .119288E+04

4 CASCADE STAGES, EACH OF THE FORM:

F(z) = ( 1 + B1*z**(-1) + B2*z**(-2) ) / ( 1 + A1*z**(-1) + A2*z**(-2) )

B1 B2 A1 A2

-1.954298 1.000000 -.346731 .610059

-1.804029 1.000000 .056927 .846903

1.076307 1.000000 -1.366019 .891495

1.747559 1.000000 -.965191 .663870

SCALE FACTOR FOR UNITY GAIN IN PASSBAND: 1.8000479016654E-002

FREQUENCY RESPONSE

FREQUENCY GAIN GAIN (dB) PHASE DELAY (SEC)

.0000 2.1048E-03 -5.3536E+01 .00000 .13458E-03

40.0000 2.0557E-03 -5.3741E+01 -.03385 .13493E-03

80.0000 1.9093E-03 -5.4382E+01 -.06789 .13600E-03

120.0000 1.6681E-03 -5.5556E+01 -.10228 .13780E-03

.

.

.
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Measuring the Phase Response

Suppose the input to a system is

x(t) = A sinω0t

and the output is

y(t) = B sin(ω0t + θ)

Phase Differences by Lissajous Figures

If x(t) is applied to the horizontal input of an

oscilloscope and y(t) is applied to the vertical

input, the following ellipse will be observed:

( y

B

)2

− 2
( x

A

)( y

B

)

cos θ +
( x

A

)2

= sin2 θ

If θ = 0 the ellipse becomes the straight line

y =
B

A
x

When θ = π/2, the principal axes are aligned

with the x and y axes.
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Phase Differences by Lissajous

Figures (cont.)

The maximum value for x is xmax = A. The

ellipse crosses the x-axis when y = 0 or

ω0t + θ = π. The corresponding value for x is

x0 = A sin(π − θ) = A sin θ

Thus
x0

xmax

= sin θ

and so

θ = sin−1 x0

xmax

The Lissajous figures form an interesting display

but it is difficult to make accurate measurements

of θ this way.
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Measuring Phase Differences by Relative

Time Delay

The output can also be expressed as

y(t) = B sin[ω0(t + d)] = B sin(ω0t + θ)

where

θ = ω0d = 2π
d

T0
radians

Therefore, the phase difference can be easily

found by multiplying the relative time delay by

the frequency in radians/sec or by multiplying 2π

by the ratio of the time delay and the period of

the sinewave.

Students have found it much easier and more

accurate to use this method for measuring the

phase response.
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Setting Break and Profile Points in Assembly

Programs Called from C

In evaluating filter implementations, you are asked to

measure the time required to generate a filter output

sample. If you try to set break or profile points in an

ASM routine called from C by displaying the ASM

source code and setting these points on displayed

source lines, the source lines will be highlighted as if

the point was set. But when you run the program,

Code Composer will tell you that it can not set the

break or profile point and it has disabled the point.

Fortunately, there is a solution. First set a break

point on the C source line that calls the ASM

function. Restart your program and run it to this

break point. Then single step into the ASM routine.

The Dis-Assembly window should rise to the surface.

Then set the desired break or profile points in the

Dis-Assembly window. Go to the Profiler menu and

enable the clock and display the statistics. Delete the

break point on the C line that calls the ASM routine.

Finally, restart and run your program and the

profiling statistics should be displayed.
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Chapter 3, Experiment 3
IIR Filter Experiments

Perform the following tasks for IIR filters:

1. Design an IIR bandpass filter based on an

elliptic lowpass analog prototype. Use a 16

kHz sampling rate. The lower stopband

should extend from 0 to 800 Hz, the passband

from 2000 to 5000 Hz, and the upper

stopband from 7000 to 8000 Hz. The

passband ripple should be no more than 0.3

dB and the stopband attenuation should be

at least 40 dB.

Plot the theortical amplitude response

generated by the filter design program on a

dB scale. Plot the phase response also.

Explain any discontinuities in the phase

response.

2. Write a program to implement your filter on

the DSK. Use type 1 direct forms for the

filter sections. You can use C or assembly.
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Experiment 3.3 (cont.)

3. Use the signal generator and oscilloscope to

measure the amplitude response and plot it in

dB. Also measure the phase response and plot

the results. Be sure to adjust the measured

responses for the responses of the analog

paths in the DSK. Compare your theoretical

and measured responses.

4. Use the profiling capability of Code Composer

Studio to measure the number of clock cycles

and time required to process one sample, and

record the result. Do this for the two cases

where the program is compiled without

optimization and with level -o3 optimization.
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