
Chapter 2 Learning to Use the
Hardware and Software

Contents

Slide 2-1 A Sample Linker Command File
Slide 2-2 Sample Linker Command File (cont. 1)
Slide 2-3 Sample Linker Command File (cont. 2)
Slide 2-4 C Program to Use as a Starting Point
Slide 2-5 Program for Starting Point (cont. 1)
Slide 2-6 Program for Starting Point (cont. 2)
Slide 2-7 Program for Starting Point (cont. 3)
Slide 2-8 Program for Starting Point (cont. 4)
Slide 2-9 Program for Starting Point (cont. 5)
Slide 2-10 Program for Starting Point (cont. 6)
Slide 2-11 Program for Starting Point (cont. 7)
Slide 2-12 Program for Starting Point (cont. 8)
Slide 2-13 Getting Samples to and from the Codec
Slide 2-14 The Function DSK6713 AIC23 write()
Slide 2-15 Receiving Samples from the Codec
Slide 2-16 AIC23 Sampling Rates
Slide 2-17 AIC23 Analog Interface Properties
Slide 2-18 AIC23 ADC and DAC Filter Responses
Slide 2-19 Creating a CCS Project for dskstart32.c
Slide 2-20 Build Options for Code Composer

Slide 2-21 A Simple First Experiment

Slide 2-22 Simple First Experiment (cont. 1)
Slide 2-23 McBSP Properties
Slide 2-24 McBSP Block Diagram
Slide 2-25 McBSP Transmitter Block Diagram
Slide 2-26 Operation of Serial Port Transmitter
Slide 2-27 McBSP Receiver Block Diagram
Slide 2-28 Operation of the Serial Port Receiver
Slide 2-29 C Code for Polling Stereo Read
Slide 2-30 C Code for Polling Stereo Write

Slide 2-31 Experiment 2.2 Sines by Polling

Slide 2-32 Experiment 2.2 (cont.)
Slide 2-33 Generating Samples of a Sine Wave
Slide 2-34 Sample Program Segment for Polling
Slide 2-35 Some Important Information

Slide 2-36 Using Interrupts to Generate Sines
Slide 2-37 Using Interrupts (cont. 1)
Slide 2-38 Default CPU Interrupt Sources
Slide 2-39 Interrupt Sources
Slide 2-40 Interrupt Sources (cont.)
Slide 2-41 External Interrupt Sources

2-ii

Slide 2-42 Interrupt Control Registers
Slide 2-43 Conditions for an Interrupt
Slide 2-44 What Happens with an Interrupt
Slide 2-45 What Happens with an Interrupt (cont.)
Slide 2-46 Example of an ISFP
Slide 2-47 C Interrupt Service Routines
Slide 2-48 Using the dsk6713bsl32.lib Interrupt

Functions
Slide 2-49 Selected Library Interrupt Functions
Slide 2-50 Installing a C ISR

Slide 2-51 Experiment 2.3 Interrupts

Slide 2-52 Sample Program Segment for
Interrupts

Slide 2-53 Sample Program for Ints (cont. 1)
Slide 2-54 Sample Program for Ints (cont. 2)
Slide 2-55 Sample Program for Ints (cont. 3)

Slide 2-56 Enhanced DMA (EDMA)

Slide 2-57 EDMA Overview
Slide 2-58 EDMA Overview (cont.)
Slide 2-59 EDMA Event Selection
Slide 2-60 Registers for Event Processing
Slide 2-61 Default EDMA Events

2-iii

Slide 2-62 EDMA Event Selection (1)
Slide 2-63 EDMA Event Selection (2)
Slide 2-64 EDMA Event Selection (3)
Slide 2-65 The Parameter RAM (PaRAM)
Slide 2-66 The OPT Field in the (PaRAM)
Slide 2-67 Contents of the PaRAM

Slide 2-68 Synchronization of EDMA Transfers
Slide 2-69 Synchronization of Transfers (cont.)
Slide 2-70 Linking EDMA Transfers
Slide 2-71 Linking EDMA Transfers (cont.)
Slide 2-72 EDMA Interrupts to the CPU
Slide 2-73 Chaining EDMA Channels

Slide 2-74 Experiment 2.4 EDMA

Slide 2-75 Experiment 2.4 EDMA (cont.)
Slide 2-76 Example EDMA Code Segment
Slide 2-77 EDMA Code Segment (cont. 1)
Slide 2-78 EDMA Code Segment (cont. 2)
Slide 2-79 EDMA Code Segment (cont. 3)
Slide 2-80 EDMA Code Segment (cont. 4)
Slide 2-81 EDMA Code Segment (cont. 4)
Slide 2-82 EDMA Code Segment (cont. 5)

2-iv

'

&

$

%

Chapter 2

Learning to Use the Hardware and Software

Tools by Generating a Sine Wave

The directory C:\C6713dsk contains two example files

that you can use as a starting point for all your

projects.

A Sample Linker Command File

/***/

/* File dsk6713.cmd */

/* This linker command file can be used as the*/

/* starting point for linking programs for the */

/* TMS320C6713 DSK. */

/* */

/* This CMD file assumes everything fits into */

/* internal RAM. If that’s not true, map some */

/* sections to the external SDRAM. */

/***/

-c

-heap 0x1000

-stack 0x400

/* Search Default Libraries */

-lrts6700.lib

-lcsl6713.lib

2-1

'

&

$

%

A Sample Linker Command File

(cont. 1)

MEMORY

{

IRAM : origin = 0x0, len = 0x40000

/* 256 Kbytes */

SDRAM : origin = 0x80000000, len = 0x1000000

/* 16 Mbytes SDRAM */

FLASH : origin = 0x90000000, len = 0x40000

/* 256 Kbytes */

}

SECTIONS

{

.vec: load = 0x00000000 /* Interrupt vectors */

/* included by using intr_reset() */

.text: load = IRAM /* Executable code */

.const: load = IRAM /* Initialized constants */

.bss: load = IRAM /* Global and static */

/* variables */

.data: load = IRAM /* Data from .asm programs */

.cinit: load = IRAM /* Tables for initializing */

/* variables and constants */

2-2

'

&

$

%

A Sample Linker Command File

(cont. 2)

.stack: load = IRAM /* Stack for local variables*/

.far: load = IRAM /* Global and static */

/* variables declared far */

.sysmem:load = IRAM /* malloc, etc. (heap) */

.cio: load = IRAM /* Used for C I/O functions */

.csldata load = IRAM

.switch load = IRAM

}

2-3

'

&

$

%

C Program to Use as a Starting Point

When Code Composer starts, the GEL file,

DSK6713.gel, in the directory C:\ti\cc\gel is

automatically called. It

• defines a memory map

• creates some GEL functions for the GEL

menu

• sets some CPLD registers

• initializes the EMIF for the memory on the

C6713 DSK.

The program C:\c6713dsk\dskstart32.c can be

used as a starting point for writing C6713 DSK

applications. It contains the code necessary to:

• initialize the DSK board

• initialize the TMS320C6713 McBSPs

• initialize the AIC 23 codec.

2-4

'

&

$

%

C Program to Use as a Starting Point

(cont. 1)

The program dskstart32.c uses functions from

the UMD modified DSK Board Support Library

(BSL), C:\c6713dsk\dsk6713bsl32.lib, to

continue the initialization. You can find detailed

documentation for the BSL by starting Code

Composer and clicking on

Help ->Contents ->TMS320C6713 DSK ->

Software -> Board Support

The modified library, its header files, and sources

are in the directories:

C:\c6713dsk\dsk6713bsl32\lib

C:\c6713dsk\dsk6713bsl32\include

C:\c6713dsk\dsk6713bsl32\sources

\dsk6713bsl.zip.

2-5

'

&

$

%

C Program to Use as a Starting Point

(cont. 2)

∗ The program dskstart32.c first initializes the

board support library by calling DSK6713_init()

who’s source code is in the BSL file dsk6713.c.

This

• initalizes the chip’s PLL

• configures the EMIF based on the DSK

version

• sets the CPLD registers to a default state

∗ Next dskstart32.c initializes the interrupt

controller registers and installs the default

interrupt service routines by calling the function

intr_reset() in the UMD added file intr.c.

This:

• clears GIE and PGIE

• disables all interrupts except RESET in IER

• clears the flags in the IFR for the the

maskable interrupts INT4 - INT15

2-6

'

&

$

%

C Program to Use as a Starting Point

(cont. 3)

• resets the interrupt multiplexers

• initializes the interrupt service table pointer

(ISTP)

• sets up the Interrupt Service Routine Jump

Table

The object modules intr.obj and intr_.obj

were added to BSL library so you should not

include intr.c and intr_.asm in your project.

Functions included in intr.c are:

intr_reset() Reset interrupt regs to defaults

intr_init() Initialize Interrupt Service

Table Pointer

ints_isn() Assign ISN to CPU interrupt

intr_get_cpu_intr() Return CPU int. assigned to ISN

intr_map() Place ISN in int. mux. register

intr_hook() Hook ISR to interrupt

A set of macro functions for setting and clearing

bits in the IER and IFR are available. See intr.c

and intr.h for complete documentation.

2-7

'

&

$

%

C Program to Use as a Starting Point

(cont. 4)

∗ Next the codec is started by calling the function

DSK6713_AIC23_openCodec(). This function:

• configures serial port McBSP0 to act as a

unidirectional control channel in the SPI

mode transmitting 16-bit words

• Then configures the AIC23 stereo codec to

operate in the DSP mode with 16-bit data

words with a sampling rate of 48 kHz

• Then McBSP1 is configured to send data

samples to the codec or receive data samples

from the codec in the DSP format using

32-bit words.

– The first word transmitted by the AIC23

is the left channel sample. The right

channel sample is transmitted immediately

after the left sample.

2-8

'

&

$

%

C Program to Use as a Starting

Point (cont. 5)

– The AIC23 generates a single frame sync

at the beginning of the left channel

sample. Therefore, a 32-bit word received

by McBSP1 contains the left sample in the

upper 16 bits and the right sample in the

lower 16 bits.

– The 16-bit samples are in 2’s complement

format.

– Words transmitted from McBSP1 to

AIC23 must have the same format.

– The codec and McBSP1 are configured so

that the codec generates the frame syncs

and shift clocks.

∗ See the text at the top of dskstart32.c for more details

about the UMD modifications of

DSK6713_AIC23_openCodec.c from the TI BSL version

which sets McBSP1 to transmit and receive 16-bit words.

2-9

'

&

$

%

C Program to Use as a Starting Point

(cont. 6)

∗ Finally, dskstart.c enters an infinite loop that

reads pairs of left and right channel samples from

the codec ADC and loops them back out to the

codec DAC. This loop should be replaced by the

C code to achieve the goals of your experiments.

/* Program dskstart.c */

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <intr.h>

#include <math.h>

/* Codec configuration settings */

/* See dsk6713_aic23.h and the TLV320AIC23 Stereo */

/* Audio CODEC Data Manual for a detailed */

/* description of the bits in each of the 10 AIC23*/

/* control registers in the following configura- */

/* tion structure. */

2-10

'

&

$

%

C Program to Use as a Starting Point

(cont. 7)

DSK6713_AIC23_Config config = { \

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL

Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL

Right line input channel volume */\

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL

Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL

Right channel headphone volume */ \

0x0011, /* 4 DSK6713_AIC23_ANAPATH

Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH

Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN

Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF

Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE

Sample rate control (48 kHz) */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT

Digital interface activation */ \

};

2-11

'

&

$

%

C Program to Use as a Starting Point

(cont. 8)

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

Uint32 sample_pair = 0;

/* Initialize the interrupt system */

intr_reset();

/* dsk6713_init() must be called before other */

/* BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec,

DSK6713_AIC23_FREQ_16KHZ);

/* Read left and right channel samples from */

/* the ADC and loop them back out to the DAC. */

for(;;){

while(!DSK6713_AIC23_read(hCodec, &sample_pair));

while(!DSK6713_AIC23_write(hCodec, sample_pair));

}

}

2-12

'

&

$

%

Getting Samples to and from the

Codec

Sending Samples to the Codec

• Left and right sample pairs are sent to the

codec as 32-bit words with the left channel

sample in the upper 16 bits and the right

channel sample in the lower 16 bits. Each

sample is in 16-bit two’s complement format.

• These 32-bit words are sent to the codec by

the BSL function DSK6713_AIC23_write().

This function:

– polls the McBSP1 XRDY flag and returns

immediately without sending the sample if

it is false and also returns the value 0.

– It sends the sample word by writing it to

the Data Transmit Register (DXR) of

McBSP1 if XRDY is 1 (TRUE) and

returns the value 1.

2-13

'

&

$

%

The Function DSK6713 AIC23 write()

#include <dsk6713.h>

#include <dsk6713_aic23.h>

Int16 DSK6713_AIC23_write(DSK6713_AIC23_CodecHandle

hCodec, Uint32 val)

{ /* If McBSP not ready for new data, return false */

if (!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE)) {

return (FALSE);

}

/* Write 16 bit data value to DXR */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, val);

/* Short delay for McBSP state machine to update */

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

return(TRUE);

}

Note: McBSP_xrdy() and MCBSP_write() are in

TI’s CSL library.

2-14

'

&

$

%

Receiving Samples from the Codec

Words are read from the codec by using the function

DSK6713_AIC23_read(). This function:

• polls the RRDY flag of McBSP1 and returns

immediately if it is FALSE without reading a

word and also returns the value FALSE.

• If RRDY is TRUE it reads a word from the Data

Receive Register (DRR) of McBSP1 and returns

the value TRUE.

Function DSK6713 AIC23 read.c

#include <dsk6713.h>

#include <dsk6713_aic23.h>

Int16 DSK6713_AIC23_read(DSK6713_AIC23_CodecHandle

hCodec, Uint32 *val)

{/* If no new data available, return false */

if (!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE)) {

return (FALSE);

}

/* Read the data */

*val = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

return (TRUE);

}

Note: MCBSP_rrdy() and MCBSP_read() are in TI’s

CSL library.

2-15

'

&

$

%

AIC23 Properties

For complete details on the AIC23 Codec see:

Texas Instruments, “TLV320AIC23 Stereo Audio

CODEC Data Manual,” SLWS106C, July 2001.

AIC32 Sampling Rates

The C6713 DSK supplies a 12 MHz clock to the

AIC23 codec which is divided down internally in the

AIC23 to give the sampling rates shown in the table

below. The codec can be set to these sampling rates

by using the function

DSK6713_AIC23_setFreq(handle, freq ID).

freq ID Value Frequency

DSK6713 AIC23 FREQ 8KHZ 0x06 8000 Hz

DSK6713 AIC23 FREQ 16KHZ 0x2c 16000 Hz

DSK6713 AIC23 FREQ 24KHZ 0x20 24000 Hz

DSK6713 AIC23 FREQ 32KHZ 0x0c 32000 Hz

DSK6713 AIC23 FREQ 44KHZ 0x11 44100 Hz

DSK6713 AIC23 FREQ 48KHZ 0x00 48000 Hz

DSK6713 AIC23 FREQ 96KHZ 0x0e 96000 Hz

“Value” is put in AIC23 control register 8.

2-16

'

&

$

%

AIC23 Analog Interface Properties

• Line Inputs

ADC full-scale range of 1.0 V RMS

• Microphone Input

MICIN is a high-impedance, low-capacitance

input compatible with a wide range of

microphones.

• Line Outputs

DAC full-scale output voltage is 1.0 V RMS.

• Headphone Output

Stereo headphone outputs designed to drive

16 or 32-ohm headphones.

• Analog Bypass Mode

The analog line inputs can be directly

connected to the analog line outputs.

• Sidetone Interface

The AIC23 has a sidetone insertion mode

where the microphone input is routed to the

line and headphone outputs.

2-17

'

&

$

%

–70

–90
0 0.5 1 1.5

–50

–10

10

2 2.5 3

–30

F
ilt

er
 R

es
po

ns
e

–
dB

Normalized Audio Sampling Frequency

FILTER RESPONSE
vs

NORMALIZED AUDIO SAMPLING FREQUENCY

Figure 3–11. ADC Digital Filter Response I: TI DSP and Normal Modes
(Group Delay = 12 Output Samples)

–90
0 0.5 1 1.5

10

2 2.5 3

–10

–30

–50

–70

F
ilt

er
 R

es
po

ns
e

–
dB

Normalized Audio Sampling Frequency

FILTER RESPONSE
vs

NORMALIZED AUDIO SAMPLING FREQUENCY

Figure 3–19. DAC Digital Filter Response I: TI DSP and Normal Modes

Note: NORMALIZED AUDIO SAMPLING FREQUENCY = f/fs

2-18

'

&

$

%

Creating a CCS Project for

dskstart32.c

• The first time you use Code Composer you

need to save your Workspace in a place where

you have write permission. To do this, start

Code Composer, click on File, then

Workspace, and then Save Workspace As ...

and give it a valid name.

• To start a project in CCS, click on Project,

select New, and fill out the boxes as follows:

Project Name: give it a name

Location: a directory in your

private workspace

Project type: Executable (.out)

Target TMS320C67xx

• Copy C:\c6713dsk\dskstart32.c to your

workspace and add the copied C source file to

the project.

2-19

'

&

$

%

Project Build Options for Code Composer

Next set the build options for Code Composer. Click on

Project and select Build Options. Enter the following

options:

Compiler -> Basic

Target Version: 671x (-mv6710)

Generate Debug Info: Full Symbolic Debug (-g)

Opt Speed vs Size: Speed Most Critical (no ms)

Opt Level: None

Program Level Opt: None

Compiler -> Preprocessor

Include Search Path (-i):.; c:\c6713dsk\dsk6713bsl32\include

Define Symbols (-d): CHIP_6713

Preprocessing: None

Compiler -> Files

Asm Directory: "a directory in your workspace"

Obj Directory: "a directory in your workspace"

Linker -> Basic

Output Filename (-o): dskstart32.out (you can change)

Map Filename (-m): dskstart32.map (optional)

Autoinit Model: Run-time autoinitialization

Library Search Path:

Make sure to add to the project the linker command file:

c:\c6713dsk\dsk6713.cmd

and the library

c:\c6713dsk\dsk6713bsl32\lib\dsk6713bsl32.lib

2-20

'

&

$

%

A Simple First Experiment

• When the project has been created, build the

executable module by clicking on the Rebuild

All icon or Project → Rebuild All.

• Load the program using File → Load Program

The program, dskstart32.c, simply loops the

ADC input back to the DAC output. Check this

by doing the following:

• Plug a stereo cable into the DSK Line Input

and connect both channels to the same signal

generator output. The program dskstart32

sets the codec to sample at 16000 Hz, so set

the signal generator to output a sine wave of

less than 8000 Hz.

• Plug a stereo cable into the DSK Line

Output. Connect the left and right outputs

to two different oscilloscope channels. You

should use channels 1 and 4 on the HP

oscilloscopes.

2-21

'

&

$

%

A Simple First Experiment (cont. 1)

NOTE: The right channel is the white plug

and the left channel is the red plug.

• Start the program running and check that the

sine waves appear on the scope. Make sure

the input level is small enough so that there

is no clipping.

• Vary the sine wave frequency. What happens

when it is more than 8000 Hz? Why?

• Measure the amplitude response of the

system by varying the input frequency and

dividing the output amplitude by the input

amplitude. Plot the amplitude response. Use

enough frequencies to get a smooth curve,

particularly in regions where the amplitude

response changes quickly. Your amplitude

response results will be needed for Chapter 3

experiments.

2-22

'

&

$

%

Multichannel Buffered Serial Port

(McBSP) Properties

• Can generate shift clocks and frame sync

signals internally, or use external signals (The

DSK uses external ones)

• Can transmit or receive 8, 12, 16, 20, 24, or

32-bit words

• Double-buffered data registers, which allow a

continuous data stream

• Can generate receive and transmit interrupts

to the CPU or events to the EDMA

• µ-law and A-law hardware companding

options

• Multichannel selection of up to 32 elements

from a 128 element TDMA frame

• Direct interface to industry-standard codecs

2-23

'

&

$

%

McBSP Block Diagram

'C6000 McBSP

Transmit ter

Receiver

Samp le
Rate Gen.

Events/
Interrupts

D X

FSX

D R

FSR

CLKX

CLKR

CLKS

CPUclk FSG

CLKG

XEVT

REVT

XINT

RINT

To DMA To CPU

DX/DR Serial transmit/receive data

FSX/FSR Transmit/receive frame sync

CLKX/CLKR Transmit/receive serial shift clock

XINT/RINT Transmit/receive interrupt to CPU

XEVT/REVT Transmit/receive interrupt to DMA

CLKS External clock for Sample Rate Gen.

Shaku Anjanaiah and Brad Cobb, “TMS320C6000 McBSP

Initialization,” SPRA488A, September 2001, Figure 1, p. 2.

2-24

'

&

$

%

McBSP Transmitter Block Diagram

DXRData Transmit Register
(018C0004h)

Transmit Shift
Register Transmit Data

DX pin

XSR

32

1

32

Serial Port Control Register (018C0008h)

21 20 1

RRSTRRDYRINTM RFULLRJUSTXRSTXRDYXINTM

0214 13

XEMPTY

161718 5 4

Note: Addresses are for McBSP0

2-25

'

&

$

%

Operation of Serial Port Transmitter

• The CPU or EDMA writes a word into the

Data Transmit Register (DXR). The XRDY

flag is cleared whenever data is written to the

DXR.

• After a word (32 bits in our case) is shifted

out of Transmit Shift Register (XSR), a

parallel transfer of the DXR into the XSR is

performed. The XRDY flag is set when the

transfer occurs.

• The serial port transmitter sends an interrupt

request (XINT) to the CPU when the XRDY

flag makes a transition from 0 to 1 if XINTM

= 00b in the SPCR. It also sends a Transmit

Event Notice (XEVT) to the EDMA.

2-26

'

&

$

%

McBSP Receiver Block Diagram

DRRData Receive Register
(018C0000h)

Receive Shift
Register Receive Data

DR pin

RSR

32

32

1

RBR

32

Receive Buffer
Register

Note: Addresses are for McBSP0

2-27

'

&

$

%

Operation of Serial Port Receiver

• RX bits shift serially into the Receive Shift

Register (RSR).

• When a full element is received, the 32-bit

RSR is transferred in parallel to the Receive

Buffer Register (RBR) if it is empty.

• The RBR is copied to the Data Receive

Register (DRR) if it is empty.

• The RRDY bit in SPCR is set to 1 when

RSR is moved to DRR, and it is cleared when

DRR is read.

• When RRDY transitions from 0 to 1, the

McBSP generates a CPU interrupt request

(RINT) if RINTM = 00b in the SPCR. A

receive event (REVT) is also sent to the

EDMA controller.

2-28

'

&

$

%

Example C Code for Polling Stereo Read

DSK6713_AIC23_CodecHandle hCodec;

Uint32 sample_pair = 0;

float left, right;

...

/* Read input sample pair using the polling BSL

McBSP read function */

while(!DSK6713_AIC23_read(hCodec,&sample_pair));

/* Shift right to move left ch 16 bits to

bits 15 - 0 and extended sign into

bits 31 - 16. Then convert to float. Since

sample_pair is an unsigned 32-bit int it

must be cast into a 32-bit signed int for an

arithmetic right shift with sign extension */

left = ((int) sample_pair) >> 16;

/* Shift left by 16 to lop off left ch and

then right by 16 to sign extend.

Convert to float. */

right =((int) sample_pair) << 16 >> 16;

2-29

'

&

$

%

Example C Code for Polling Stereo

Write

DSK6713_AIC23_CodecHandle hCodec;

float left, right;

int ileft, iright, sample;

...

/* Convert left and right values to integers */

ileft = (int) left;

iright = (int) right;

/* Combine L/R samples into a 32-bit word */

sample = (ileft<<16)|(iright & 0x0000FFFF);

/* Poll XRDY bit until true, then write to DXR*/

while(!DSK6713_AIC23_write(hCodec, sample));

2-30

'

&

$

%

Chapter 2, Experiment 2
Generating Sine Waves Using XRDY

Polling

For Experiment 2.2, do the following:

1. Set the sampling rate to 16 kHz.

2. Set the codec to stereo mode.

3. Generate a 1 kHz sine wave on the left

channel and a 2 kHz sine wave on the right

channel. Remember that | sin(x)| ≤ 1 and

that floats less than 1 become 0 when

converted to ints. Therefore, scale your

floating point sine wave samples to make

them greater than 1 and fill reasonable part

of the DAC dynamic range before converting

them to ints.

4. Combine the left and right channel integer

samples into a 32-bit integer and write the

resulting word to the McBSP1 DXR using

polling of the XRDY flag.

2-31

'

&

$

%

Experiment 2.2 (cont.)

5. Observe the left and right channel outputs on

two oscilloscope channels.

6. Verify that the sine wave frequencies observed

on the scope are the desired values by

measuring their periods.

7. Use the signal generator to measure the

frequencies.

8. When you have verified that your program is

working, change the left channel frequency to

15 kHz and the right channel frequency to 14

kHz. Measure the DAC output frequencies.

Explain your results mathematically with

equations. (Hint: Look up “aliasing” in any

reference on digital signal processing.)

2-32

'

&

$

%

Generating Samples of a Sine Wave

Continuous Time Sine Wave

s(t) = sin 2πf0t

Sampled Sine Wave

Let fs = 1/T be the sampling rate where T is the

sampling period.

s(nT) = sin 2πf0nT = sin 2π
f0

fs

n

= sinn∆θ

where ∆θ = 2πf0/fs

Recursive Angle Generation

Let

θ(n) = n∆θ

Then

θ(n + 1) = (n + 1)∆θ = n∆θ + ∆θ = θ(n) + ∆θ

2-33

'

&

$

%

Sample Program Segment for Polling

#include <math.h>

#define pi 3.141592653589

int sample = 0;

float fs = 16000.;

float f0 = 1000.;

float delta = 2.*pi*f0/fs;

float twopi = 2.0*pi;

float angle = 0;

float left;

for(;;){ /* Infinite loop */

left = 15000.0*sin(angle); /* Scale for DAC */

sample = ((int) left) <<16;/* Put in top half*/

/* Poll XRDY bit until true, then write to DXR*/

while(!DSK6713_AIC23_write(hCodec, sample));

angle += delta; /* Increment sine wave angle */

if(angle >= twopi) angle -= twopi;

/* Keep angle from overflowing */

}

2-34

'

&

$

%

Some Important Information

• Remember to include math.h in your C

program.

• The DSK has stereo LINE IN and LINE

OUT jacks. The lab has cables to convert

from the DSK stereo plug to an RCA mono

connector for the left channel and an RCA

mono connector for the right channel. The

RCA connectors are plugged into RCA to

BNC adapters so they can be connected to

the oscillators and oscilloscopes.

• Cable Color Scheme

– Left Channel: Red plug

– Right Channel: White plug

2-35

'

&

$

%

Method 2 for Generating a Sine

Wave – Using Interrupts

Almost all the time in the polling method is spent

sitting in a loop waiting for the XRDY flag to get

set. A much more efficient approach is to let the

DSP perform all sorts of desired tasks in the

background and have the serial port interrupt

these background tasks when it needs a sample to

transmit. The interrupt service routine is called a

foreground task.

The TMS320C6713 contains a vectored priority

interrupt controller.

• The highest priority interrupt is RESET

which cannot be masked.

• The next priority interrupt is the

Non-Maskable Interrupt (NMI) which is used

to alert the DSP of a serious hardware

problem.

2-36

'

&

$

%

Using Interrupts (cont. 1)

• There are two reserved interrupts and 12

additional maskable CPU interrupts. The

peripherals, such as, the timers, McBSP and

McASP serial ports, EDMA controller, plus

external interrupt pins sourced from the

GPIO module present a set of many interrupt

sources. The 16 CPU interrupts and their

default sources are shown in the table on

Slide 2-38. INT 00 has the highest priority

and INT 15 the lowest.

• The interrupt system includes a multiplexer

to select the CPU interrupt sources and map

them to the 12 maskable prioritized CPU

interrupts. The complete list of C6713

interrupt sources is shown in the tables on

Slides 2-39 and 2-40 along with the required

Interrupt Selector values.

• The GPIO module can select external pins as

interrupt sources. The mapping is shown of

Slide 2-41.

2-37

TMS320C6713 Default Interrupt Source

Mapping

INTERRUPT DEFAULT
CPU SELECTOR SELECTOR DEFAULT

INTERRUPT CONTROL VALUE INTERRUPT
NUMBER REGISTER (BINARY) EVENT

INT 00 - - RESET

INT 01 - - NMI

INT 02 - - Reserved

INT 03 - - Reserved

INT 04 MUXL[4:0] 00100 GPINT4

INT 05 MUXL[9:5] 00101 GPINT5

INT 06 MUXL[14:10] 00110 GPINT6

INT 07 MUXL[20:16] 00111 GPINT7

INT 08 MUXL[25:21] 01000 EDMAINT

INT 09 MUXL30:26] 01001 EMUDTDMA

INT 10 MUXH[4:0] 00011 SDINT

INT 11 MUXH[9:5] 01010 EMURTDXRX

INT 12 MUXH[14:10] 01011 EMURTDXTX

INT 13 MUXH[20:16] 00000 DSPINT

INT 14 MUXH[25:21] 00001 TINT0

INT 15 MUXH[30:26] 00010 TINT1

2-38

'

&

$

%

First 16 Interrupt Sources

INTERRUPT
SELECTOR INTERRUPT MODULE

VALUE EVENT
(BINARY)

00000 DSPINT HPI

00001 TINT0 Timer 0

00010 TINT1 Timer 1

00011 SDINT EMIF

00100 GPINT4 GPIO

00101 GPINT5 GPIO

00110 GPINT6 GPIO

00111 GPINT7 GPIO

01000 EDMAINT EDMA

01001 EMUDTDMA Emulation

01010 EMURTDXRX Emulation

01011 EMURTDXTX Emulation

01100 XINT0 McBSP0

01101 RINT0 McBSP0

01110 XINT1 McBSP1

01111 RINT1 McBSP1

2-39

'

&

$

%

Remaining 16 Interrupt Sources

INTERRUPT
SELECTOR INTERRUPT MODULE

VALUE EVENT
(BINARY)

10000 GPINT0 GPIO

10001 Reserved -

10010 Reserved -

10011 Reserved -

10100 Reserved -

10101 Reserved -

10110 I2CINT0 I2C0

10111 I2CINT1 I2C1

11000 Reserved -

11001 Reserved -

11010 Reserved -

11011 Reserved -

11100 AXINT0 McASP0

11101 ARINT0 McASP0

11110 AXINT1 McASP1

11111 ARINT1 McASP1

2-40

'

&

$

%

External Interrupt Sources

PIN INTERRUPT MODULE

NAME EVENT

GP[15] GPINT0 GPIO

GP[14] GPINT0 GPIO

GP[13] GPINT0 GPIO

GP[12] GPINT0 GPIO

GP[11] GPINT0 GPIO

GP[10] GPINT0 GPIO

GP[9] GPINT0 GPIO

GP[8] GPINT0 GPIO

GP[7] GPINT0 or GPINT7 GPIO

GP[6] GPINT0 or GPINT6 GPIO

GP[5] GPINT0 or GPINT5 GPIO

GP[4] GPINT0 or GPINT4 GPIO

GP[3] GPINT0 GPIO

GP[2] GPINT0 GPIO

GP[1] GPINT0 GPIO

GP[0] GPINT0 GPIO

2-41

Interrupt Control Registers

Name Description

CSR Control status

register

Globally set or disable

interrupts

IER Int enable reg Enable interrupts. Bit

n corresponds to INT n

IFR Int flag regis-

ter

Shows status of inter-

rupts. Bit n corre-

sponds to INT n

ISR Interrupt set

register

Manually set flags in

IFR

ICR Interrupt clear

register

Manually clear flags in

IFR

ISTP Interrupt

service table

pointer

Pointer to the begin-

ning of the interrupt

service table

NRP Nonmaskable

interrupt

return pointer

Return address used on

return from a nonmask-

able interrupt

IRP Interrupt

return pointer

Return address used on

return from a maskable

interrupt

2-42

'

&

$

%

Conditions for an Interrupt

The following conditions must be met to process

a maskable interrupt:

• The global interrupt enable bit (GIE) which is

bit 0 in the control status register (CSR) is

set to 1. When GIE = 0, no maskable

interrupt can occur.

• The NMIE bit in the interrupt enable register

(IER) is set to 1. No maskable interrupt can

occur if NMIE = 0.

• The bit corresponding to the desired

interrupt is set to 1 in the IER.

• The desired interrupt occurs, which sets the

corresponding bit in the interrupt flags

register (IFR) to 1 and no higher priority

interrupt flags are 1 in the IFR

2-43

'

&

$

%

What Happens When an Interrupt

Occurs

• The corresponding flag bit in the IFR is set to 1.

• If GIE = NMIE = 1 and no higher priority

interrupts are pending, the interrupt is serviced:

– GIE is copied to PGIE and GIE is cleared to

preclude other interrupts.

– The flag bit in the IFR is cleared.

– The return address is put in the interrupt

return pointer (IRP).

– When CPU interrupt INT n occurs, program

execution jumps to byte offset 4 × 8 × n = 32n

in an interrupt service table (IST).

∗ The IST contains 16 interrupt service fetch

packets (ISFP), each consisting of eight

32-bit instruction words.

2-44

'

&

$

%

What Happens When an Interrupt

Occurs (cont.)

∗ An ISFP may contain an entire interrupt

service routine or may branch to a larger

service routine.

∗ We will normally start the interrupt service

table (IST) at location 0. It can be relocated

and the Interrupt Service Table Pointer

register (ISTP) points to its starting address

which must be a multiple of 256 words.

– The service routine must save the CPU state

on entry and restore it on exit.

– A return from a maskable interrupt is

accomplished by the assembly instructions

B IRP; return, moves PGIE to GIE

NOP 5 ; delay slots for branch

2-45

'

&

$

%

Example of an Interrupt Service

Fetch Packet

An ISFP for RESET for C programs is shown

below.

mvkl _c_int00, b0; load lower 16 bits of _c_init

mvkh _c_int00, b0; load upper 16 bits of _c_init

b b0 ; branch to C initialization

;

; Note: 5 instructions are executed before the

; branch actually occurs.

;;;

mvc PCE1, b0 ; get base of IST

mvc b0, ISTP ; load pointer to IST base

nop 3 ; do 3 NOP’s to make a total of

; 5 instructions after branch

;;

nop ; add two words to fetch packet

nop ; to make a total of 8 words

2-46

'

&

$

%

C Interrupt Service Routines
TI Extension to Standard C

• Declare the function to be an ISR by using

the interrupt keyword:

interrupt void your_isr_name(){}

or use the interrupt pragma:

#pragma INTERRUPT(your_isr_name)

• The C compiler will generate code to:

1. Save the CPU registers used by the ISR

on the stack. If the ISR calls another

function, all registers are saved.

2. Restore the registers before returning with

a B IRP instruction.

• You cannot pass parameters to, or return

values from an interrupt service routine.

2-47

'

&

$

%

Using the dsk6713bsl32.lib Interrupt

Functions

To write and build programs using the TI C

interrupt extensions and the dsk6713bsl32

interrupt functions:

• Add the linker command file

c:\c6713dsk\dsk6713.cmd to your project.

• Include the following header file in your C

program

C:\c6713dsk\dsk6713bsl32\include\intr.h

You should set the “Include Search Path” in

your project, so it is only necessary to use the

line “include intr.h” in your C program.

• Be sure to add the library dsk6713bsl32.lib

to your project file..

• The interrupt service table is generated in a

section called .vec. The sample beginning

linker command file dsk6713cmd loads the

.vec section starting at absolute address 0.

2-48

Selected Library Interrupt Functions

INTR_CHECK_FLAG(bit) Returns value of bit in

IFR

INTR_CLR_FLAG(bit) Clears int by writing 1 to

ICR

INTR_ENABLE(bit) Sets bit in IER

INTR_DISABLE(bit) Clears bit in IER

INTR_GLOBAL_ENABLE(bit) Sets GIE bit in CSR

INTR_GLOBAL_DISABLE(bit) Clears GIE bit in CSR

intr_hook(*fp,cpu_intr) Place func ptr into isr

jump table at location

for cpu interrupt

intr_reset() Clears GIE, PGIE, IER,

and IFR; resets interrupt

select mux’s; initializes

IST and ISTP; installs

ISR Jump Table

intr_init() Initialize ISTP

intr_map(cpu_intr, isn) Maps int source to the

CPU interrupt

intr_isn(cpu_intr) Returns interrupt src

number for CPU inter-

rupt

2-49

'

&

$

%

Installing a C ISR

• Use intr_init() to initialize the ISTP, and

install the interrupt service table and

interrupt branch table.

• Map the interrupt source number to a CPU

interrupt number.

intr_map(CPU_INT15, ISN_XINT0);

• Clear the interrupt flag to make sure none is

pending.

INTR_CLR_FLAG(CPU_INT15);

• Hook the ISR to the CPU interrupt. Let the

ISR be my_isr().

intr_hook(my_isr, CPU_INT15);

• Enable the NMI interrupt.

INTR_ENABLE(CPU_INT_NMI);

• Enable the CPU interrupt in the IE register.

INTR_ENABLE(CPU_INT15);

• Set the GIE bit in the CSR.

INTR_GLOBAL_ENABLE();

2-50

'

&

$

%

Chapter 2, Experiment 3
Generating Sine Waves by Using Interrupts

Repeat the steps for Experiment 2.2 but now use

a C interrupt service routine to generate the sine

wave samples and write them to the McBSP1

data transmit register (DXR1). No polling of the

XRDY flag is needed because samples are

transmitted only when interrupts from the

McBSP1 transmitter cause execution to jump

into your interrupt service routine.

The main() function should:

• initialize McBSP0, McBSP1, and the codec

with a 16 kHz sampling rate

• map CPU INT15 to McBSP1 XINT1

Note: The choice of INT15 was arbitrary.

Any of INT4 – INT15 can be used.

• hook CPU INT15 to your ISR

• enable interrupts

• go into an infinte interruptable loop

2-51

'

&

$

%

Sample C Segment for Interrupts

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <intr.h>

.

.

.

#define sampling_rate 16000.

#define freq_left 1000.

#define freq_right 2000.

#define scale 10000.0

#define PI 3.141592653589

float twopi = 2.*PI;

float delta_left = 2.0*PI*freq_left/sampling_rate;

/*phase increment left sine */

float delta_right = 2.0*PI*freq_right/sampling_rate;

/*phase increment right sine*/

interrupt void tx_isr(void); /* prototype the ISR */

2-52

'

&

$

%

Sample Program for Ints (cont. 1)

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

/* Initialize interrupt system with intr_reset() */

/* */

/* The default interrupt service routines are */

/* set up by calling the function intr_reset() in */

/* the UMD added file intr.c. This clears GIE */

/* and PGIE, disables all interrupts except RESET */

/* in IER, clears the flags in the IFR for the */

/* the maskable interrupts INT4 - INT15, resets */

/* the interrupt multiplexers, initializes the */

/* interrupt service table pointer (ISTP), and */

/* sets up the Interrupt Service Routine Jump */

/* Table. */

intr_reset();

/* dsk6713_init() must be called before other */

/* BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec. McBSP1 uses 32-bit words */

hCodec = DSK6713_AIC23_openCodec(0, &config);

2-53

'

&

$

%

Sample Program for Ints (cont. 2)

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec,

DSK6713_AIC23_FREQ_16KHZ);

/* Select McBSP1 transmit int for INT15 */

intr_map(CPU_INT15, ISN_XINT1);

/* Hook our ISR to INT15 */

intr_hook(tx_isr, CPU_INT15);

/* Clear old interrupts */

INTR_CLR_FLAG(CPU_INT15);

/* Enable interrupts */

/* NMI must be enabled for other ints to occur */

INTR_ENABLE(CPU_INT_NMI);

/* Set INT15 bit in IER */

INTR_ENABLE(CPU_INT15);

/* Turn on enabled ints */

INTR_GLOBAL_ENABLE();

/*Write a word to start transmission */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, 0);

for (;;); /* infinite loop */

}

2-54

'

&

$

%

Sample Program for Ints (cont. 3)

interrupt void tx_isr(void){

float x_left, x_right;

/***/

/* Note: angle_left and angle_right must retain */

/* their values between ISR calls. This can be */

/* done by making them static as below or global.*/

/***/

static float angle_left=0.;

static float angle_right=0.;

int output, ileft, iright;

/* 1. Generate scaled left and right channel sine */

/* samples. Convert them to integers and combine */

/* into a 32-bit word, output. */

/* 2. Increment phase angles of sines modulo 2 pi.*/

/* 3. There is no need to poll XRDY since its */

/* transition from false to true causes a jump */

/* to this ISR. DSK6713_AIC23_DATAHANDLE is */

/* declared as a global variable in */

/* DSK6713_aic23_opencodec.c. Just write the */

/* output sample to McBSP1 by the CSL library */

/* function MCBSP_write as shown below. *.

MCBSP_write(DSK6713_AIC23_DATAHANDLE, output);

}

2-55

'

&

$

%

Enhanced Direct Memory Access

(EDMA)

The Enhanced Direct Memory Access Controller

(EDMA) handles all data transfers between the

L2 cache/memory controller and the peripherals.

These include cache servicing, non-chacheable

memory access, user-programmed data transfers,

and host access.

The EDMA can move data to and from any

addressable memory spaces including internal

memory (L2 SRAM), peripherals, and external

memory.

The EDMA is quite complex and we will only

touch on its operation. See TMS320C6000

Peripherals Reference Guide, SPRU190D,

Chapter 4 and TMS320C6713B Floating-Point

Digital Signal Processor, SPRS294B, October

2005 for complete details.

2-56

'

&

$

%

EDMA Overview

• The EDMA controller includes event and

interrupt processing registers, an event

encoder, a parameter RAM, and address

generation hardware.

• The EDMA has 16 independent channels and

they can be assigned priorities.

• Data transfers can be initiated by the CPU or

events.

• When an event occurs, its transfer parameters

are read from the Parameter RAM (PaRAM).

These parameters are sent to address

generation hardware.

• The EDMA can transfer elements that are

8-bit bytes, 16-bit halfwords, or 32-bit words.

• Very sophisticated block transfers can be

programmed. The EDMA can transfer

1-dimensional and 2-dimensional data blocks

consisting of multiple frames. (See

SPRU190D Section 6.8 for details.)

2-57

'

&

$

%

EDMA Overview (cont.)

• After an element transfer, source and/or

destination element addresses can stay the

same, be incremented or decremented by one

element, or incremented or decremented by

the value in the index register ELEIDX for the

channel. Arrays are offset by FRMIDX for the

channel.

• After a programmed transfer is completed,

the EDMA can continue data transfers by

linking to another transfer programmed in

the Parameter RAM for the channel or by

chaining to a transfer for another channel.

• The EDMA can generate transfer completion

interrupts to the CPU along with a

programable transfer complete code. The

CPU can then take some desired action based

on the transfer complete code.

• The EDMA has a quick DMA mode (QDMA)

that can be used for quick, one-time transfers.

2-58

'

&

$

%

EDMA Event Selection

The ’C6713 EDMA supports up to 16 EDMA

channels. Channels 8 through 11 are reserved for

chaining, leaving 12 channels to service peripheral

devices. Data transfers can be initiated by (1) the

CPU or (2) events. The default mapping of

events to channels is shown in Slide 2-61.

The user can change the mapping of events to

channels. The EDMA selector registers ESEL0,

ESEL1, and ESEL2 control this mapping. Slides

2-62, 2-63, and 2-64 show the events and selector

codes.

Registers for Event Processing

• Event Register (ER)

When event n occurs, bit n is set in the ER.

• Event Enable Register (EER)

Setting bit n of the EER enables processing of

that event. Setting bit n to 0 disables

processing of event n. The occurrence of event

n is latched in the ER even if it is disabled.

2-59

'

&

$

%

Registers for Event Processing

(cont.)

• Event Clear Register (ECR)

If an event is enabled in the EER and gets

posted in the ER, the ER bit is automatically

cleared when the EDMA processes the

transfer for the event. If the event is disabled,

the CPU can clear the event flag bit in the

ER by writing a 1 to the corresponding bit in

the ECR. Writing a 0 has no effect.

• Event Set Register (ESR)

Writing a 1 to a bit in the ESR causes the

corresponding bit in the event register (ER)

to get set. This allows the CPU to submit

event requests and can be used as a good

debugging tool.

2-60

TMS320C6713 Default EDMA Events

EDMA DEFAULT
EDMA SELECTOR SELECTOR DEFAULT
CHAN. CONTROL CODE EDMA

REGISTER (BINARY) EVENT

0 ESEL0[5:0] 000000 DSPINT

1 ESEL0[13:8] 000001 TINT0

2 ESEL0[21:16] 000010 TINT1

3 ESEL0[29:24] 000011 SDINT

4 ESEL1[5:0] 000100 GPINT4

5 ESEL1[13:8] 000101 GPINT5

6 ESEL1[21:16] 000110 GPINT6

7 ESEL1[29:24] 000111 GPINT7

8 - - TCC8 (Chaining)

9 - - TCC9 (Chaining)

10 - - TCC10 (Chaining)

11 - - TCC11 (Chaining)

12 ESEL3[5:0] 001100 XEVT0

13 ESEL3[13:8] 001101 REVT0

14 ESEL3[21:16] 001110 XEVT1

15 ESEL3[29:24] 001111 REVT1

2-61

EDMA Event Selection (1)

EDMA
SELECTOR EDMA MODULE

BINARY CODE EVENT

000000 DSPINT HPI

000001 TINT0 Timer 0

000010 TINT1 Timer 1

000011 SDINT EMIF

000100 GPINT4 GPIO

000101 GPINT5 GPIO

000110 GPINT6 GPIO

000111 GPINT7 GPIO

001000 GPINT0 GPIO

001001 GPINT1 GPIO

001010 GPINT2 GPIO

001011 GPINT3 GPIO

001100 XEVT0 McBSP0

001101 REVT0 McBSP0

001110 XEVT1 McBSP1

001111 REVT1 McBSP1

010000-011111 Reserved

2-62

EDMA Event Selection (2)

EDMA
SELECTOR EDMA MODULE

BINARY CODE EVENT

100000 AXEVTE0 McASP0

100001 AXEVTO0 McASP0

100010 AXEVT0 McASP0

100011 AREVTE0 McASP0

100100 AREVTO0 McASP0

100101 AREVT0 McASP0

100110 AXEVTE1 McASP1

100111 AXEVTO1 McASP1

101000 AXEVT1 McASP1

101001 AREVTE1 McASP1

101010 AREVTO1 McASP1

101011 AREVT1 McASP1

2-63

EDMA Event Selection (3)

EDMA
SELECTOR EDMA MODULE

BINARY CODE EVENT

101100 I2CREVT0 I2C0

101101 I2CXEVT0 I2C0

101110 I2CREVT1 I2C1

101111 I2CXEVT1 I2C1

110000 GPINT8 GPIO

110001 GPINT9 GPIO

110010 GPINT10 GPIO

110011 GPINT11 GPIO

110100 GPINT12 GPIO

110101 GPINT13 GPIO

110110 GPINT14 GPIO

110111 GPINT15 GPIO

111000-111111 Reserved

2-64

The Parameter RAM (PaRAM)

The transfer parameter table for the EDMA

channels and link information is stored in the

Parameter RAM (PaRAM) which is a 2K-byte

RAM block located within the EDMA. The table

consists of six-word parameter sets for a total of

85 sets. Each set uses 6 × 4 = 24 bytes and

contains the parameters for a transfer shown in

the following table.

Format of a Transfer Set Record

31 16 15 0

Options (OPT) Word 0

Source Address (SRC) Word 1

Array/frame count Element count Word 2

(FRMCNT) (ELECNT)

Destination Address (DST) Word 3

Array/frame index Element index Word 4

(FRMIDX) (ELEIDX)

Element count link address Word 5

reload (ELERLD) (LINK)

2-65

'

&

$

%

The OPT Field in the (PaRAM)

The meanings of all the fields in a transfer set are

fairly obvious except for OPT which contains

fields to:

• to set the priority to High or Low

• set the element size to 8, 16, or 32 bits

• define the source and destination as 1- or

2-dimensional

• set the source and destination address update

modes

• enable or disable the transfer complete

interrupt

• define the transfer complete code

• enable or disable linking

• set the frame synchronization mode.

2-66

'

&

$

%

Contents of the PaRAM

The PaRAM is organized as follows:

• The first 16 parameter sets are for the 16 EDMA

events. Each set contains 24 bytes.

• The remaining parameter sets are used for linking

transfers. Each set is 24 bytes.

• The remaining 8 bytes of unused RAM can be

used as a scratch pad area. A part of or the entire

PaRAM can be used as a scratch pad RAM when

the events corresponding to this region are

disabled.

When an event mapped to a particular channel

occurs, say channel n with n ∈ {0, 1, . . . , 15}, its

parameters are read from parameter set n in the

PaRAM and sent to the address generation hardware.

2-67

'

&

$

%

Synchronization of EDMA Transfers

The EDMA can make 1 or 2-dimensional

transfers. We will only consider the 1-D case. A

1-D block transfer consists of FRMCNT + 1

frames. Each frame consists of the number of

elements specified by the field ELECNT in the

parameter set. The following two types of 1-D

synchronized transfers are possible:

1. Element Synchronized 1-D Transfer

(FS=0 in OPT)

When a channel sync event occurs, for

example, a transition of a McBSP XRDY flag

from false to true,

• an element in a frame is transferred from

its source to destination,

• The source and destination addresses are

updated in the parameter set after the

element is transferred,

• and the element count (ELECNT) is

decremented in the parameter set.

2-68

'

&

$

%

Synchronization of Transfers (cont.)

When ELCNT = 1, indicating the final element in

the frame, and a sync event occurs,

• the element is transferred.

• Then the element count is reloaded with the

value of ELERLD in the parameter set and

• the frame count (FRMCNT) is decremented

by 1.

• The EDMA continues transfers at sync events

for a new frame if one still remains to be

transferred.

2. Frame Synchronized 1-D Transfers

(FS = 1 in OPT)

A sync event causes all the elements in a

frame to be transferred as rapidly as possible.

Each new event causes another frame to be

transferred as rapidly as possible until the

requested number of frames has been

transferred.

2-69

'

&

$

%

Linking EDMA Transfers

• When the LINK field, bit 1, in options

parameter OPT is set to 0, the EDMA stops

after a transfer is completed.

• When LINK = 1 and the requested transfer is

completed, the transfer parameters are

reloaded with the parameter set pointed to by

the 16-bit link address, and the EDMA

continues transfers with this new set.

– The entire parameter RAM is located in

the memory area 01A0xxxxh, so a 16-bit

link address is sufficient. The link address

must be located on a 24-byte boundary.

– There is no limit to the number of

transfers that can be linked. However, the

final transfer should link to a NULL

parameter set which is one with all its

entries set to 0 (24 zero bytes).

2-70

'

&

$

%

Linking EDMA Transfers (cont.)

– A transfer can be linked to itself to

simulate the autoinitialization feature of

the TMS320C6201 and TMS320C6701

DMA. This is useful for circular buffering

and repetitive transfers.

– To eliminate timing problems resulting

from the parameter reload time, the event

register (ER) is not checked while the

parameters are being reloaded. However,

new events are registered in the ER.

– Any record in the PaRAM can be used for

linking. However, a set in the first 16

should be used only if the corresponding

event is disabled.

2-71

'

&

$

%

EDMA Interrupts to the CPU

When the TCINT bit is set to 1 in OPT for an

EDMA channel and the event mapped to the

channel occurs, the EDMA sets a bit in the

channel interrupt pending register (CIPR)

determined by the transfer complete code

programmed in OPT.

Then, if the bit corresponding to the channel is

set in the channel interrupt enable register

(CIER), the EDMA generates the interrupt

EDMA INT to the CPU.

If the CPU interrupt EDMA INT (default

CPU INT8) is enabled in the CPU IER, program

execution jumps to the vectored interrupt service

routine (ISR). The ISR can read the CIPR to

check which EDMA events have been registered

as completed and take the appropriate action.

2-72

'

&

$

%

Chaining EDMA Channels

The EDMA chaining capability allows the

completion of an EDMA channel transfer to

trigger another EDMA channel transfer. EDMA

chaining does not modify any channel parameters.

It just gives a synchronization event to the

chained channel.

Linking and chaining are different. Linking

reloads the current channel parameters with the

linked parameters and transfers continue on the

same channel with the linked parameters.

Chaining does not modify or update any chained

parameters. It simply gives a synchronization

event to the chained channel.

Channels 8, 9, 10, and 11 are reserved for

chaining. Chaining is enabled by setting bit 8, 9,

10, or 11 in the channel chain enable register

(CCER). The four-bit field, transfer complete code

(TCC), in OPT for a channel must also be set to

one of these four values to cause chaining to occur

at the end of the transfer.

2-73

'

&

$

%

Chapter 2, Experiment 4
Generating a Sine Wave Using the EDMA

Controller

To learn how to use the EDMA controller, do the

following:

• Configure the McBSP’s and codec as before

and again use a 16 kHz sampling rate.

• Generate a 512 word integer array,

table[512], where the upper 16 bits are the

samples for 32 cycles of a 1 kHz sine wave for

the left channel, and the lower 16 bits are the

samples for 64 cycles of a 2 kHz sine wave for

the right channel. Of course, the left and right

channel sine wave samples must be scaled to

use a large part of the DAC’s dynamic range

and must be converted to 16-bit integers

before being combined into 32-bit words.

2-74

'

&

$

%

Experiment 2.4, EDMA (cont.)

• Configure the EDMA controller to transfer

the entire array of 512 samples to the Data

Transmit Register (DXR) of McBSP1 which

will send them to the codec. Synchronize the

transfers with the XRDY1 event to get the 16

kHz sampling rate.

• Link the channel parameter set back to itself

so the sine waves are continuously sent.

• Observe the codec left and right channel

outputs on the oscilloscope and verify that

they are sine waves with the desired

frequencies.

An example code segment is shown in the

following slides that does most of the work for

you. This code segment is on the PC’s hard

drive as C:\c6713dsk\edma_sines.c and on

the class web site.

2-75

'

&

$

%

Example EDMA Code Segment

This program segment uses TI’s Chip Support Library

(CSL) to configure the EDMA. Detailed information

about the CSL can be found in the manual:

TMS320C6000 Chip Support Library API Reference

Guide, SPRU401.

You can also find CSL documentation by bringing up

Code Composer and following the path:

Help → Contents → Chip Support Library → EDMA

Module.

The EDMA is configured to:

• Use element sync by the event XEVT1 which

happens when XRDY1 makes a transition from 0

to 1. The default mapping of this event to EDMA

channel 14 is used.

• Transfer single frames containing 512 elements

with the elements being 32-bit words.

• Repeatedly transmit the same 512-word sine wave

sample frame by linking back to the same

parameter set at the end of each frame transfer.

2-76

'

&

$

%

Example EDMA Code Segment (cont. 1)

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <csl_edma.h>

#include <intr.h>

#include <math.h>

/* NOTE: The TI compiler gives warnings

if math.h is moved up under stdlib.h */

#define sampling_rate 16000

#define SZ_TABLE 512

#define f_left 1000.

#define f_right 2000.

#define scale 15000.

#define pi 3.141592653589

int table[512];

/* Codec configuration settings

See dsk6713_aic23.h and the TLV320AIC23 Stereo

Audio CODEC Data Manual for a detailed

description of the bits in each of the 10 AIC23

control registers in the following configuration

structure. */

2-77

'

&

$

%

Example EDMA Code Segment (cont. 2)

DSK6713_AIC23_Config config = { \

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL

Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL

Right line input channel volume */\

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL

Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL

Right channel headphone volume */ \

0x0011, /* 4 DSK6713_AIC23_ANAPATH

Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH

Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN

Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF

Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample

rate control (48 kHz) */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT

Digital interface activation */ \

};

EDMA_Handle hEdmaXmt; // EDMA channel handles

EDMA_Handle hEdmaReloadXmt;

2-78

'

&

$

%

Example EDMA Code Segment (cont. 3)

Int16 gXmtChan; // TCC code (see initEDMA())

/* Transmit side EDMA configuration */

EDMA_Config gEdmaConfigXmt = {

EDMA_FMKS(OPT, PRI, HIGH) | // Priority

EDMA_FMKS(OPT, ESIZE, 32BIT) | // Element size

EDMA_FMKS(OPT, 2DS, NO) | // 1 dimensional source

EDMA_FMKS(OPT, SUM, INC) | // Src update mode

EDMA_FMKS(OPT, 2DD, NO) | // 1 dimensional dest

EDMA_FMKS(OPT, DUM, NONE)| // Dest update mode

EDMA_FMKS(OPT, TCINT, NO)| // No EDMA interrupt

EDMA_FMKS(OPT, TCC, OF(0))| // Trans. compl. code

EDMA_FMKS(OPT, LINK, YES)| // Enable linking

EDMA_FMKS(OPT, FS, NO), // Use frame sync?

(Uint32) table, // Src address

EDMA_FMK (CNT, FRMCNT, NULL) | // Frame count

EDMA_FMK (CNT, ELECNT, SZ_TABLE),// Element cnt

EDMA_FMKS(DST, DST, OF(0)), //Dest address

EDMA_FMKS(IDX, FRMIDX, DEFAULT) | // Frame index

EDMA_FMKS(IDX, ELEIDX, DEFAULT), // Element index

2-79

'

&

$

%

Example EDMA Code Segment (cont. 4)

EDMA_FMK (RLD, ELERLD, NULL) | // Reload element

EDMA_FMK (RLD, LINK, NULL) // Reload link

};

/* Function Prototypes */

void initEdma(void);

void create_table(void);

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

intr_reset(); /* Initialize interrupt system */

/* dsk6713_init() must be called before other

BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec. McBSP1 uses 32-bit words,

1 phase, 1 word frame */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec,

DSK6713_AIC23_FREQ_16KHZ);

create_table(); /* You must write this function. */

2-80

'

&

$

%

Example EDMA Code Segment (cont. 4)

initEdma(); /* Initialize the EDMA controller

(See below) */

while(1); /* infinite loop */

} /* end of main() */

/**/

/* Create a table where upper 16-bits are samples */

/* of a sine wave with frequency f_left, and the */

/* lower 16 bits are samples of a sine wave with */

/* frequency f_right. */

/**/

void create_table(void){

Put your code to generate the sine table here.

}

/***/

/* initEdma() - Initialize the DMA controller. */

/* Use linked transfers to automatically restart */

/* at beginning of sine table. */

/***/

void initEdma(void)

{

/* Configure transmit channel */

2-81

'

&

$

%

Example EDMA Code Segment (cont. 5)

/* get hEdmaXmt handle, Set channel event to XEVT1 */

hEdmaXmt =EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);

// get handle for reload table

hEdmaReloadXmt = EDMA_allocTable(-1);

// Get the address of DXR for McBSP1

gEdmaConfigXmt.dst = MCBSP_getXmtAddr(

DSK6713_AIC23_DATAHANDLE);

// then configure the Xmt table

EDMA_config(hEdmaXmt, &gEdmaConfigXmt);

// Configure the Xmt reload table

EDMA_config(hEdmaReloadXmt, &gEdmaConfigXmt);

// link back to table start

EDMA_link(hEdmaXmt,hEdmaReloadXmt);

EDMA_link(hEdmaReloadXmt, hEdmaReloadXmt);

// enable EDMA channel

EDMA_enableChannel(hEdmaXmt);

/* Do a dummy write to generate the first

McBSP transmit event */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, 0);

}

2-82

