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EE 313 Linear Signals & Systems (Fall 2017)

Solution Set for Mini-Project #1 on Multipath Fading
Anyesha Ghosh & Prof. Brian L. Evans

Mini-Project #1 is to examine the effects of multipath fading on a wireless communications signal.
The assignment asks one to calculate the signal strength of the receiver as a function of the location
of the receiver in a vehicle. On a smart phone, the received signal strength is shown graphically.
Traditionally, the received signal strength indicator (RSSI) uses vertical signal bars using five levels (0-
4 bars). More recent operating systems display the RSSI as a continual value using a ramp shape.

The assignment is from the following reference:

J. H. McClellan, R. W. Schafer & M. A Yoder, "Section 6 Lab Exercise: Multipath Fading”,
Lab P-2: Introduction to Complex Exponentials: Multipath,
http://dspfirst.gatech.edu/chapters/DSP1st2elLabs/MultipathLab.pdf

The first paragraph below and the figure that follows it are from the above reference.

In a mobile radio system (e.g., cell phones or AM radio), there is one type of degradation that is a
common problem. This is the case of multipath fading caused by reflections of the radio waves
which interfere destructively at some locations. Consider the scenario diagrammed in Fig. 1
where a vehicle traveling on the roadway receives signals from two sources: directly from the
transmitter and reflections from another object such as a large building. This multipath problem
can be modeled easily with sinusoids. The total received signal at the vehicle is the sum of two
signals which are themselves delayed versions of the transmitted signal, s(z).
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Figure 1: Scenario for multipath in mobile radio. A vehicle traveling on the roadway (to the right)
receives signals from two sources: the transmitter and a reflector located at (d,,, d,,).

Assume that the speed of propagation in the medium is the speed of light, c.

a) t1(x,) = distance between transmitter & vehicle/c

dtz +xv2

c
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b) t,(x,) = distance between transmitter & vehicle via reflector/c

\/(dt_dyr)z +dxr2 +\/(dxr_xv)2+dyr2

c

c) ()= s(t—1ty) —s(t—ty)
= cos(anO(t — tl)) —cos (2rfy(t — ty)).
The reported maximum value after running the code below is 0.5737.
f0 = 150*10%6;
xv = 0;
c = 3*10"8;
pt = [0;1500];
pr = [100;900];
pv = [xv;0];
tl = sqgrt(sum((pt-pv)."2))/c;
t2 = [sgrt(sum((pt-pr).”2))+sgrt(sum((pr-pv)."2))1/c;
fs = 200*£0;
t = 0:1/£fs:3/£0;
rv = cos (2*pi*fO0* (t-tl))-cos(2*pi*f0*(t-t2));
plot (t, rv)
ylabel ("r v(t)");xlabel("t(in s)");
m = max (rv)
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d) n(t) = s(t—t;) —s(t—t)
= Re{ej27tfo(t—t1) _ ejano(t—tz)} — Re{ejZHfot(e—jZHfotl _ e—jzn-fotz)}
= Re{r,e/ Z™ot*9)} for some 1y, .
max1,(t) = max Re{r;e/?mht+e)}
= max 1y.cos (2mfyt + @)
= r;.max cos(2mfot + @)
=n (as max cos(2nfot + @) = 1)
So,maxr,(t) = r; = magnitude(r,.(t)) 1) :

— rlej(znfot"'(p)

This shows how we can find the maximum value of the waveform just by taking the
magnitude of the sum of two complex exponentials.
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Using this derivation, the reported maximum value after running the code below is 0.5738.
The graph is the same as shown above.

f0 = 150*10"6;

xv = 0;

c = 3*10"8;

pt = [0;1500];

pr = [100;900];

pv = [xv;0];

tl = sqgrt(sum((pt-pv)."2))/c;

t2 = [sqgrt(sum((pt-pr).”"2))+sqgrt(sum((pr-pv)."2))1/c;

fs = 24*f0;

t = 0:1/£s:3/£0;

rv_complex = exp(2*j*pi*f0* (t-tl))-exp(2*J*pi*f0* (t-t2));

plot (t, real (rv_complex))

ylabel ("r v(t)");xlabel("t(in s)");

m = abs(rv_complex (1)) $All points in rv_complex have the same
magnitude, so we can take the absolute value of any point in rv_complex.

e) The complex amplitudes of the two waveforms are: e /2™ fot1 & ¢=J27fotz
Substituting the values of t; & t,, the complex amplitudes become:

| % +xp? J(dt—dyr)z+dxr2+J(dxr—xv)2+dyr2

e J2mfo—— g o2 z

To see why summing these complex amplitudes, and taking its magnitude will give the max
value, consider the following proof.

From the previous part, we have,
efZHfot(e—jznfoh —_ e_jznfOtZ) — ‘r‘lej(znfot"'(p)

Cancelling e/2™/ot from both sides, we get,
e_jznfotl — e_jznfOtZ — rlej(p

=> mag (e /2™t — ¢=J2Tht2) = mag(re/?) = 1, = max 7,(t) —-(1)

Solution #1: Using a for loop

f0 150*%1076;
xv = 0:0.01:300;
c = 3*10"8;

pt = [0;1500];
pr = [100;900];
max val = zeros(length(xv),1);

pv = [xv(1);0];

for i=1:1:length (xv)
pv = [xv(i);0];
tl sqrt (sum ( (pt-pv) ."2)) /c;
t2 [sgrt (sum( (pt-pr) .”2))+sgrt (sum( (pr-pv) ."2))1/c;

max _valc = exp (-2*j*pi*f0*tl)-exp (-2*J*pi*f0*t2); % (1) shows how the
maximum value 1is calculated from this.

max val (i) = abs(max valc);
end
plot (xv,max val);
xlabel ("Position of vehicle x (in m)");

ylabel ("Signal strength");
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Solution #2: Using vectorized code

f0 = 150*%10"6;

xv = 0:0.01:300;

c = 3*10"8;

pt repmat ([0;1500],1, length (xv));
pr = repmat ([100;900],1,length(xv));
pv = [xv;zeros(l,length(xv))];

tl = sqrt(sum((pt-pv)."2))/c;
t2 = [sgrt(sum((pt-pr).”2))+sgrt(sum((pr-pv)."2))1/c;

max valc = exp (-2*j*pi*f0*tl)-exp (-2*j*pi*f0*t2); % (1) shows how the
maximum value i1s calculated from this.

max val = abs(max valc);

plot (xv,max val);

xlabel ("Position of vehicle x (in m)");

ylabel ("Signal strength");

The vectorized code is much more efficient. | timed both the codes, and got these run times:

Vectorized code: 0.01627s

Code with for loop: 0.03051s
At first glance, the performance gains do not seem that dramatic (~2x). This is because of
the costly repmat() operation at the beginning of the vectorized code. However, this cost
gets amortized over the size of xv, making the vectorized code much more efficient for large
arrays. To really see the benefits of vectorization, we need to time the core part of the code,
which is the for loop in one of the codes, and the calculation of t1,t2,max_valc,max_val for
the other. When just those parts are timed, | got the following run times:

Vectorized code: 0.485ms
Code with for loop: 12.07685ms
Here, we see that the vectorized code gives a 25x speedup over the code with the for loop!

f) The code for the plot generation is given above. The derivation of how to get the peak value
from the complex amplitude is also given above. The signal strength vs. xv plot is below.
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g) The largest value of the signal strength is 2 & the lowest value is 0. This makes sense as the
largest value would be achieved when the two signals — directly transmitted & reflected,
arrive exactly in phase with each other. In that case, the magnitudes of the two signals
(magnitude of each signal = 1) add up to give a signal strength of 2.

The lowest value of the signal strength is achieved when the two signals arrive exactly (it
rad) out of phase. Then, signal magnitudes get subtracted, giving a net signal strength of 0.

As we can see from the plot, complete signal cancellation occurs at a number of values of x,,.
The values of x,, can be read off from the plot: 16.96m, 37.27m, 59.53m, 84.97m, 115.1m,
154.1m, 249.9m.

These values can also be calculated by equating the phase shifts.

For complete cancellation,

\/(dt_dyr)z+dxr2+\/(dxr_xv)2+dyr2 \/dtz"'xvz

21fy. . - " = 2nm,n is a whole number

Substituting & simplifying, we get,

21150 * 106. { \/(6002+1002+\/C(100—x,,)2+9002 _ J150()02+xv2} -
211150 % 1078, { \/ﬁ+\/(1—xc,,/100)2+81 _ J225+(;Ccv/100)2} = o

V37 + /(1 — x,/100)2 + 81 — /225 + (x,,/100)? = n/50

Using Mathematica to solve this for different values of n, we get the exact zero locations:
16.99m, 37.23m, 59.58m, 84.9m, 114.9m, 154.2m, 249.8m.



