EE 313 Linear Signals & Systems (Fall 2017)

1.

Solution Set for Homework #2 on Fourier Series

By: Ms. Anyesha Ghosh & Prof. Brian L. Evans

Prologue: This problem reviews concepts introduced in the last homework, and shows how
you can find the spectra for simple signals without calculating the full Fourier transform.
Solution:
a) x(t) = 10 + 20 cos(2m(100)t+ 1t/4) + 10 cos(2m(250)t)
=10+ 20(ej(200 mte /) o (200t n/4))/2 + 10(ej2n250t+e-j2r(250t)/2
=10 + 10ejn/4ej200 nt+10e—jn/4e-j200 nt+5ej2n250t+5e-j2n250t
Now, the fundamental frequency of the signal is gcd(100,250) = 50Hz.
fo=50Hz.
N = fmax/fo =250 Hz / 50 Hz = 5
As we can see above, the non-zero spectral components occur at k=0, k= £N and
k = +100Hz/f, = +2
From the equation above, we can read off the values of the a|’s (the values not specified

below are all zero):

ap=10,3,=10e"* a,=10e ™* as=5,a5=5

b) As shown above, the signal is periodic, with a fundamental frequency of f, = 50Hz.
The fundamental period is thus 1/f; = 0.02s

c) Here’s the plot of the spectrum

Complex spectrum of x(t)
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Epilogue: In part (a), the Fourier coefficient a; is the conjugate of a.,, and likewise for as and
a.s. Since each pair of Fourier coefficients for k # 0 has conjugate symmetry, and since aq is
always real-valued, the signal x(t) must be real-valued, and it is.

Prologue: This problem uses the Fourier analysis equation (Equation 3.26 in the book), and
asks you to find the complex coefficients of the spectral lines for a square wave. A part of
the question asks you to compute the coefficients of a time shifted version of a base signal,
which uses some of the most important properties of the Fourier transform & series.
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Solution:
a) ag = 1/T, f_T;g fzx(t)e-kaotdt , wo = 211/To, k20

To/4
= 1/T0 f_;)"o/4_

— i -1 e—jkW0t|T0/4
To ' ]kWO ’ _T0/4'
-1 -1 (e~ kWoTo/4 _ gikwoTo/4)

e_kaotdt

= i. sin (ﬁ) = i. sin (%k) (Substituting the value of wy)

—To/2
To/4 17, 1
= 1/T0f dt= —.— ==
~To/4 2 2

b) The amplitude of the rectangular pulses below is 2.

y(t)

-3T0/2 -3T0/4 -T0/4 T0/4 3T0/4 370/2 t

From P-3.14, we know that the Fourier coefficients scale as follows:
x(t) -> ay => M x(t) -> M ay (1)
x(t) -> ay => x(t-to) -> ae? <0 e (2)
Applying (1) and (2) to the coefficients derived in the previous part, we get the coefficients

by for the Fourier series of y(t):

by = 1,by = ﬁ.sin (Z—R).e_]k(;_z)'T"/Z:kz—n.si (%k).e‘j"" = (—1)".,(2—7T.sin (k771)

c) Solution #1: To plot x(t), we can add up shifted rectangular pulses
In MATLAB, the rectpuls (x) command has value 1 for x in [-0.5, 0.5). Pulse width is 1.
For tin [-To/4, 3To/4), our pulse is one for tin [-Ty/4, To/4). Pulse width is To/2.
The MATLAB command would be rectpuls (t / (T0/2));
For tin [3To/4, 7To/4), our pulse is shifted right by To: rectpuls ((t-T0) / (T0/2));
We can add up each shifted pulse to define our signal over a finite interval of time.
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f0 = 440;

TO = 1/£0;

fs = 44100;

tmax = 3;

t = -T0/4 : 1/fs : tmax-TO0/4;
timeoffsets = 0 : TO : tmax;
x = zeros(l,length(t)):;

for t0 = timeoffsets
x = X + rectpuls((t - t0) / (T0/2));
end
sound (x, £s) $ Plays x(t)
x1 = cos(2*pi*f0*t);
pause (tmax+1) ;

sound (x1, fs) ; Plays cosine at frequency fO0

Solution #2: To plot x(t), we could convert a sine wave to a rectangular pulse.
The sine wave oscillates from -1 to 1 inclusive.
The MATLAB function sign (x) returns 1ifx>0,0ifx=0and-1if x<0.

For the square wave, we’d like to have amplitude values in the interval [0, 1].
We can take the output of the sign function, add 1, and divide by 2 to get the values in [0, 1].

f0 = 440;

TO = 1/£0;

fs = 44100;

tmax = 3;

t = -T0/4 : 1/fs : tmax-TO0/4;
sineWave = sin(2*pi*f0*(t + TO0/4));
sqg_wave = sign(sineWave);

x2 = (1 + sg_wave)/2;

sound (x2, fs) ;
x1 = cos(2*pi*f0*t);
pause (tmax+1) ;
sound(x1l, fs);

Compared to a cosine at a single frequency, x(t) has more harmonics, leading to a ‘richer’
sound, whereas the cosine has just one frequency, which sounds ‘thinner’.

Epilogue: Here we see that even a “simple” signal in the time domain (square wave), has an
infinite number of harmonics in it. This shows an instance of a general rule of thumb, signals
are usually easier to manipulate mathematically in the time or frequency domain.

Prologue: This problem introduces the chirp signal (Section 3-8), and the concept of
instantaneous frequency. Chirp signals are widely used in audio, sonar, cellular, and other
systems. More about that in the epilogue.

Solution:
P(t) = at’ + Pt + ¢
w(t) =d P(t)/dt = 2at + B

Starting frequency w; = w(0) = B rad/s.

Ending frequency w, = w(T,) = 2aT,+p rad/s.
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b) P(t) = 40t*+27t+13
w(t) = d P(t)/dt = 80t + 27 rad/s.

¢) The time-frequency plot over 0s < t < 1s follows:

Instantaneous freq. f(t) (in Hz)
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d) For §(t) = at’ + Bt + & over 0 < t < T,, instantaneous frequencies go from B rad/s to
2aT,+B rad/s from part (a). So, for a = 800w, B = 5407, ¢ = 2607w and T, = 3s, the
instantaneous frequencies go from 540mx to 5340m rad/s, or from 270 to 2670 Hz. The
maximum frequency fmax is 2670 Hz. The sampling rate f; > 2 f,.x and also needs to be a
sampling rate supported by the audio playback system.

fs = 44100;

Ts 1/ fs;

t =0: Ts : 3;

y = real (exp(j.*(800.*pi.*t.”2+540.*pi.*t+260.%pi)));
sound (y, £s)

As expected, the signal shows linearly increasing frequency with time. Although one might
be able to detect that the increase is linear, one should be able to hear an increase.

Epilogue: In audio systems, a chirp can be used to sweep through a range of audible
frequencies to measure the sound quality. In active sonar systems, a chirp is transmitted
over acoustic (sound) frequencies using an underwater speaker and the sonar receiver uses
a microphone to listen for the return of the chirp signal to determine the location (angle,
distance) of objects in the environment; in this context, the chirp is often called a ‘ping’. In
cellular systems, a transmitter sends a complex-valued chirp signal, a.k.a. a Zadoff-Chu
sequence, and a receiver can used the received signal to estimate and compensate for the
distortion in the channel. A chirp signal can also be used to estimate Doppler shift.

The concept of instantaneous frequency of a sinusoid varying with time is used extensively
to carry a message signal in the frequency content of a sinusoid instead of in the amplitude.
Examples include frequency modulation and phase modulation for analog continuous-time
message signals, and frequency-shift keying and phase-shift keying for digital discrete-time
messages. Phase-shift keying has recently gained a lot of attention in low-power Internet of
Things sensors because of its incredible power effficient in transmitting bits over the air.
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Prologue: This problem shows the effect of various mathematical operations on the
frequency spectrum.

Solution:

a)

fs = 8000;

f0 = 440;

t = 0:1/fs:2; % Generating vectors to play sound for 2s
X = cos(2*pi*f0*t);

yl = x.*cos (2*pi*220*t);

y2 = x."2;

y3 = x."3;

sound (x, fs); pause (4);
sound(yl, fs); pause(4);
soundsc (y2,fs); pause(4);
sound(y3, £s);

y(t) = cos(2m440t) cos (2m220t)

Y(t) = (eJ2TH40t | o240ty (5 j2M2208 | o= ]2220tY /4
= (eJ2MO60L | o=J2M20t 4 pj2M220t | o=j2M660LY /g
= (cos(2m660t) + cos (2m220t))/2

So, y(t) contains the frequencies +660Hz and +220Hz.

As expected, we can hear a higher frequency sound (which is provided by the 660Hz
component). The sound feels as if more than one frequency is present (less ‘thin’ than a
pure cosine). Please note that 660 Hz is a harmonic of 220 Hz, and each individual may have
a different perception of a tone and its harmonic.

b)
y(t) = cos?(2m440t)
y(t) = (cos(2m880t) + 1)/2
(Using the trig. identity cos(20) = 2cos’(0) -1)

So, y(t) contains the frequencies +880Hz.

Alternatively,
y(t) = cos?(2m440t)
y(t) = (e/2m440t 4 e—j2n440t)2/4

e/2mB80L | @j2mBBOL 4 5 . cos(2m880t)

4 2 2

(Using the binomial expansion for (a+b)® = a’+b*+2ab)

We hear a higher frequency than what we got for part(a), which is provided by the 880Hz
component. It sounds ‘thin’, which is because just one frequency is present in the waveform.
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c)
y(t) = cos3(2m440t)
y(t) = (cos(2m1320t) + 3cos (2m440t))/4
(Using the trig. identity cos(30) = 4cos>(B) -3cos(0))
Alternatively, one can use phasors to work the problem with needing a trig identity:
y(t) = (e2m440t 4 g=j2ma40ty3 /g

@J2M1320t 4 ,—j2m1320t 4 3,j2M440t | 3, j2m440t

8
_ 3cos (2m4401) N cos(2m1320t)

4 4

(Using the binomial expansion for (a+b)® = a*+b*+3a’b+3ab?)

So, y(t) contains the frequencies +1320Hz and +440Hz.

This sounds as if it has a frequency between the signals in parts (a) & (b). This is probably
because the component at 1320Hz has a relatively low power. This puts more of the signal
power in the lower frequency (400Hz), making the sound seem low pitched.

Epilogue: The expansions above could also have been achieved by multiplying the terms by
hand. The binomial expansion just provides a short-cut, and cuts down on algebraic
mistakes. For reference, the binomial expansion formula is:

n
(a+b)" = Z (D)akb™*, vn e W (= set of whole numbers)
k=0

The spectral effects of multiplying signals in time will be revisited later, in much more detail,
while studying the properties of continuous-time Fourier transforms.



