EE 313 Linear Signals & Systems

Solution Set for Homework #4 on FIR Filters

By: Anyesha Ghosh & Prof. Brian L. Evans

Prologue: This problem introduces the convolution sum, and asks you to calculate it for a simple finite
impulse response filter (L-point averaging filter) given an infinitely long input signal (unit step). The unit
step signal models a physical action such as turning on a switch and leaving it on indefinitely. In discrete
time, the unit step function u[n] is zero in amplitude for n < 0, and one in amplitude for n = 0.

Solution: (a) The MATLAB function stepfun (n, n)

implements u[n-ny] and is plotted on the right:
n = -5:5;

u = stepfun(n, 0); n S
stem(n, u);

ylim([-0.5 1.5]);

Another way to have computed u[n] in MATLAB is
u= (n>20);

For a comparison operation such as >=, MATLAB returns 1 if
true and O if false.

b) y[n]is calculated as shown below:

n -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
x[n] 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
x[n-1] 0 0 0 0 0 O 1 1 1 1 1 1 1 1 1 1
x[n-2] 0 O 0O 0 0 O 0 1 1 11 1 1 1 1 1
x[n-3] 0 O 0 0 0 O 0 0 1 1 1 1 1 1 1 1
x[n-4] 0 O 0O 0 0 O 0 0 0 11 1 1 1 1 1
yIn] 0 0 o 0 0 1/5 2/5 3/5 4/5 1 1 1 1 1 1 1

¢) MATLAB code for computing the convolution using the above approach and plotting the result is

n = -5:10;
L =5;
x = stepfun(n, 0);
y = zeros(l, length(n)):;
for i = 0:L-1
y =y t x;
x = [0 x(l:length(n)-1)1; % shifts x right by one sample.
end
y =y / L;

stem(n, vy);
ylim([0 1.5])

A more compact MATLAB program to perform and plot the convolution follows:

n = -5:10; 1
L =5;

x = stepfun(n, 0);

h = ones (1, L) / L;

y = conv(h, x); T

stem(n, y(l:length(n))):

ylim([0 1.5]);
d) 05}
=
ylnl =7) xfn— k] ,x[n] = uln]
0 o3 0 5 10

0, n<k

u["_k]_{L n=>k
0, n<o0

So,y[n] = n+ 1, 0 <n <L (n+ 1 ofthe unit step fns. being added have value 1)

1, n>1L

Epilogue: The averaging filter is a lowpass filter (i.e. low frequencies pass through and high frequencies
get attenuated). Can you think why it would be lowpass? This running average is widely used in
practice, both on its own, and as a component of other algorithms. It is important enough that there are
several hardware designs & algorithms intended to optimize the running average calculation.

Prologue: Properties provide a way to characterize systems. Using mathematical analyses, one can try
different input signals and analyse the responses (outputs). This problem ask you to determine three
important system properties— linearity, time-invariance and causality— for several systems by
considering signals defined over —o < n < . The solution set will also point out any differences in the
analysis when one can only observe the system for n = 0, which was not asked in the problem.

Solution:

a) The input-output relationship in the discrete-time domain is y[n] = x[n]cos(0.2rn).
To check time-invariance, input

Xshifted [n] = x[n — n,]

and examine the output

Yshiftealn] = x[n —mnel cos(0.2mn) # y[n —nol

So, the system is not time-invariant.

To check linearity, consider y; [n] = x;[n]cos(0.2rn) and y,[n] = x,[n]cos(0.2mn)
Let Xjinear[n] = ax;[n] + bxz[n]
Yiinear [Nl = Xiinear[n] cos(0.2 mn) = (ax;[n] + bx;[n])cos(0.2 w n)

= axq[n]cos(0.2nn) + bx,[n]cos(0.2wn) = ay,[n] + by, [n]

So, the system is linear.

Since, y[n] only depends on x[n] (the current value), the system is causal.

For observing the system for n = 0, there are no initial conditions, and the system is at rest at n = 0.
We can verify the claim that there are no initial conditions by computing the first few output values:
y[0] = x[0] and y[1] = x[1] cos(0.2x) etc. There is no change to the above analyses for part (a).

b) The input-output relationship in the discrete-time domain for the first-order difference FIR filter is
y[n] = x[n] — x[n —1].

Let Xsniftea [n] = x[n — no]
}’shifted[n] = xshifted[n] — Xshifted [n—1] = x[n —ne] — x[n —ny — 1] = y[n — n,]

Yes, the system is time invariant.

To check linearity, consider y;[n] = x;[n] — x;[n — 1] and y,[n] = x3[n] — x3[n — 1]

Let Xjinearn] = axq[n] + bx;[n]

Yinear[n] = Xinear[n] — Xunear[n — 11 = a x4[n] + b x3[n] —a x1[n — 1] = b x3[n — 1]
= a(xq[n] = x1[n —1]) + b(x3[n] — x3[n —1]) = a y;[n] + b y,[n]

So, the system is linear.

Since, y[n] only depends on x[n] & x[n-1] (current & past value), the system is causal.

For observing the system for n = 0, one can see the initial conditions in the system by computing
several output values: y[0] = x[0] — x[-1] and y[1] = x[1] — x[0] etc. The FIR filter stores the previous
input value x[n-1] in a memory location. At n =0, however, we cannot observe x[-1]. Instead, x[-1]
represents the initial value in the memory location that stores x[n-1]. The initial condition must be 0
for the system to be LTI.

c) To check time invariance, consider y[n] = |x[n]|.
Let Xsniftea [n] = x[n — no]
}’shifted[n] = |xshifted[n]| = |x[n — noll = y[n —nyl

So, the system is time invariant.

To check linearity, consider x;[n] = —x[n]

yilnl = [xi[n]] = Ix[n]| = y[n] # —y[n]

So, the system is not linear. (Homogeneity part of linearity test was not satisfied)

Since, y[n] only depends on x[n] (the current value), the system is causal.

For observing the system for n = 0, there is no change to the analysis for LTI properties. The system is
a pointwise system; i.e., the output y[n] only depends on the present input x[n] and no other
quantities that depend on n. There are no initial conditions, and hence the system is at rest at n = 0.

d) To check time invariance, consider y[n] = A x[n] + B.
Let Xsniftea [n] = x[n — no]
Vshiftealn] = A Xspifrealn] + B = Ax[n —no]l + B = y[n — ny]

So, the system is time invariant.

To check linearity, consider y;[n] = A x{[n] + B and y,[n] = A x,[n] + B

Let Xjinear[n] = ax;[n] + bxz[n]

Yiinear[n] = A(a x1[n] + b x3[n]) + B = a(A x1[n] + B) + b(Ax3[n] + B) + B(1—a —b)
= ayy[n]l+ by,[n]+B(1—a—->b) # ay,[n]+ by,[n] (in general)

So, the system is not linear (in general). Itis linear only when B = 0.

Since, y[n] only depends on x[n] (the current input value), the system is causal.

For observing the system for n = 0, the system must be “at rest” as a necessary condition for LTI
properties. That means that B =0.

Epilogue: System properties can be tested through mathematical analysis (as above) by inputting
signals and analyzing the outputs (responses). A similar approach can be applied in a lab setting in
which one inputs physical signals into a system under test and measures the response.

If y can be represented as a linear function of x, is the system always linear? In this question, we only
looked at causal systems. Can you give a simple example of a non-causal system?

Prologue: We revisit convolution. In this case, you are given the impulse response h[n] and output y[n]
of the system, and asked to determine the input signal x[n]. In a camera, for example, light passes
through a lens and onto an array of photoreceptors. Intensity of light falling on the photoreceptors is
the output y[n] and an LTI model of the lens gives the impulse response h[n] which is also known as a
point spread function. A goal in camera processing is to find the image x[n] through deconvolution.

General Solution for Deconvolution: For the case that x[n], h[n] and y[n] are causal, we can develop a
systematic approach for solving deconvolution problems. We start by writing out y[n] = x[n] * h[n]:

y[n] = h[0]x[n] + h[1]x[n — 1] + R[2]x[n — 2] + --- + h[M]x[n — M]

Since x[n] is causal, the values of x[-1], x[-2], ..., x[-M] are zero. So, the first output value is

y[0] = h[0]x[0]

Since we know h[n] and y[n], we can solve for x[0] = y[0] / h[0] provided that h[0] # 0. Continuing,
y[1] = h[0]x[1] + h[1]x[0]

This gives one equation in one unknown, x[1]. We can continue in this way until all of the values of x[n]
are solved. This approach, when valid, can work for infinitely long causal x[n] signals. The approach is
valid none of the values of h[n] over its extent is zero. See the epilogue for a more general method.

Solution:

a) h[n] =8[n— 2]and y[n] = u[n — 3] — u[n — 6]. Here, y[n] is a rectangular pulse with amplitude
1 for discrete-time samplesn={3,4,5}.
y[n] = h[n] * x[n] = h[0]x[n] + h[1]x[n — 1] + h[2]x[n — 2] + - + h[M]x[n — M] = x[n — 2]
That means x[n — 2] = u[n — 3] — u[n — 6]

- x[n] =u[n—-1] —u[n — 4]

b) h[n] = &[n] — &[n — 1] and y[n] = §[n] — §[n — 4].
We can use the general solution above.

-02

04

-06

08

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

y[0] = h[0]x[0] = 1 which means x[0] = y[0]/h[0] =1

y[1] = h[0]x[1] + A[1]x[0] = x[1] — 1 = 0 which means x[1] = 1

y[2] = h[0]x[2] + h[1]x[1] = x[2] — 1 = 0 which means that x[2] = 1
y[3] = h[0]x[3] + h[1]x[2] = x[3] — 1 = 0 which means that x[3] = 1
y[4] = h[0]x[4] + h[1]x[3] = x[4] — 1 = —1 which means that x[4] = 0
y[5] = h[0]x[5] + h[1]x[4] = x[5] — 0 = 0 which means that x[5] = 0

So, x[n] = u[n] — u[n — 4]. Below, y[n] is plotted on the left, and x[n] on the right.

0.8

0.9
0.6

0.8
0.4

0.7
0.2

0.6

x[n]

0.5

0.4

0.3

0.2

0.1

Impulse response of a four-point averaging filter is
hin] = 5 (8[n] + 6[n — 1] + 8[n — 2] + 8[n — 3])
and the output is y[n] = —=58[n] — 58[n — 2].

We can use the general solution above.

y[0] = h[0]x[0] = —5 which means x[0] = % =-20

y[1] = h[0]x[1] + A[1]x[0] = ix[l] — 5 = 0 which means x[1] = 20

y[2] = h[0]x[2] + h[1]x[1] + R[2]x[0] = %x[Z] + 5 — 5 = —5 which means that x[2] = —20
y[3] = h[0]x[3] + h[1]x[2] + h[2]x[1] + A[3]x[0] = %x[3] —5+4+5—5=0whichisx[3] = 20
y[3] = h[0]x[4] + h[1]x[3] + h[2]x[2] + R[3]x[1] = %x[4] +5—5+5=0whichisx[3] = -20
and the pattern continues indefinitely.

So, x[n] = —20 (=1)™ u[n]. Below, x[n] is plotted on the left, and y[n] on the right.

y[n]

Epilogue: When convolving two finite discrete-time signals h[n] of length N, samples and x[n] of N,
samples, the result y[n] = x[n] * h[n] will be N, = N, + Ny— 1 samples in duration. We can apply the same
relationship in deconvolution to solve for N,. In (a), we have Ny=3 -1+ 1 =3 samples. In(b), Ny=5-2
+1=4.1In(c), Ny=3—-4+1=0. Because N, =0, it will take an infinitely long x[n] in (c).

When any of the impulse response coefficients is zero, we can take the same approach as above to
develop a system of equations in the form H x =y where H is an N x N matrix, x is a vector of the N
unknown values of x[n] and y is a vector of y[n] values, and solve for x. This approach only works for a

x[n]

0 1 2 3 5 6
-5 0 -5 0 0 0
a b C d f g
0 a b C e f
0 0 a b d e
0 0 0 a C d
Solving the equations from left to right, we get,
af/d=-5=>a=-20
atb=0=>b=-a=20
(a+b+c)/4=-5=>c=-20
a+b+c+d =0=>d =20,....and so on
So, we get
n 0 1 2 3 4 5 6 7 8
x[n] -20 20 -20 20 -20 20 -20 20 -20

Which is exactly what we had seen above.

finite number of unknown x[n] values. The matrix H is known as the convolution matrix:

Let’s consider a 3 x 3 example:

y[0] = h[0]x[0]

y[1] = h[1]x
y[2] = h[2]x

h[0] O 0 |[x[0] y[0]
h[1] h[0] O [}x[1]]=|y[1]
h{2] h[1] h[O]f1x[2]] [y[2]

And then we seek to solve for the x vector.

0] + h[0]x[1]

[[
[0] + A[1]x[1] + h[0]x[2]

Prologue: The questions concerns associativity and commutativity properties of the convolution sum.
This question introduces a cascade, which is used to build complex blocks from simpler ones.

Solution:
a) For any system, h[n] = y[n] when x[n] = §[n]
So, hy[n] = &[n] — &[n — 1], hy[n] = 6[n] + 6[n — 2], h3[n] = §[n— 1] + 6[n — 2]

b) h[n] = hyln] = hy[n] = hs[n]
First calculate hq[n] * hy[n].

hy[n] * hy[n] = Zhl[k Thy[n — k] = Z(&[k]—5[k—1])(5[n—k]+5[n—k—2])

Za[k 165[n -]+5[n—k—2])—Za[k—ﬂ(a[n—k]+5[n—k—2])
6[n]+ 6[n—2]— 6[n—1]+ 6[n— 3]
h[n] = (hqy[n] * hy[n]) * h3[n]
_ Z((S[k] — 8k — 1]+ 8[k — 2] — 8[k — 3])(8[n — k — 1] + 8[n — k — 2])
Z(&[k])(&[n —k—1]+8Mn—k-2]) - Z((S[k 16—k —1] + 8[n—k —2])
+) (8lk = 2D([n — k= 1]+ 8[n -k —2]) = > (8lk = 3)(6[n — k — 1] + 8[n
~ i~ 2))

= 6fn—-1]+6n—-2]-8n—2]-6[n—-3]+6[n—3]+6[n—4]—6[n—4]—8[n—5]
6[n—1] — &[n — 5].

¢) h[n] = 6[n—1]—-6[n—5]
Since, h[n] = y[n] when x[n] = &[n], we can read off the difference equation from the
expression for h[n].

d) The difference equationis: y[n] = x[n — 1] — x[n — 5]

Epilogue: Given what we know about the convolution sum properties, do you think that re-ordering

the filter blocks would change the output? Would your answer change if we fed back the final
output to the first block in the cascade? What if we fed it back to one of the intermediate blocks?

