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EE 313 Linear Signals & Systems

Solution Set for Homework #5 on
Frequency Response of FIR Filters & Z-transforms

By: Anyesha Ghosh & Prof. Brian L. Evans

Prologue: This problem revisits lowpass filters that you have had seen on several occasions,
including homework assignments, tune-ups, and lecture. This problem provides more detail
into the discrete-time Fourier transform, and asks you to calculate it analytically.

Solution: a) h[n] = §[n] + 26[n — 1] + 8[n — 2]

The discrete-time Fourier transform (frequency response) is

M M
H(e®) = ) hlnle @™ = (8[n] + 28[n — 1] + 8[n — 2])e7o"
n=0 n=0

M M M

= Z S[nle=/om + 2 Z S[n —1]e 1@ + Z §[n — 2]e~Jon

n=0 _n=0 n=0
= 1+42e7 /@ 7720

b) We factor the signal’s discrete-time Fourier transform into magnitude-phase form in the
same way that lecture slide 9-5 does:
H(e/®) = 1+2e71@ +¢7/20 = ¢710(eJ® 4+ 2 4+ 71®) = ¢ J¥(2 + 2 cos(@))
So, |H(e/?)| = 2 + 2 cos(®) and 2 (H(ej‘?’)) = —@.
Although not asked, the phase is linear with slope of -1. Hence, the group delay through the

FIR filter is 1 sample.
To plot: use freqz ([1,2,11])
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c)

x[n] = 10 + 4cos (0.57n + %)

We evaluate the effect of the LTI FIR filter on each frequency component of x[n].

The signal x[n] has frequency componentsat @ = 0 and @ = +0.5m.

The frequency response at @ = 0 has value H(ejo) =14+2+1=4andatw = 0.5mis

3 _ . _ _r
H@h)=1+2eh+1fm=1+2eh—1=2eh

T
2

y[n] = (4)10 + (Ze_j ) 4 cos (0.5nn + %) =40 + 8 cos (O.Snn — %)
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d) x[n] = &[n]

y[n] = x[n] + 2x[n — 1] + x[n — 2] = §[n] + 26[n — 1] + §[n — 2]
1, n=20

- {2
0, else

e)x[n] = u[n

y[n] = x[n] + 2x[n — 1] + x[n — 2] = u[n] + 2u[n — 1] + u[n — 2]
0, n<o
1, n=20

Soylnl=15 no1
4, n>1

Epilogue: Some of the above parts were easier to work in the frequency domain and others
were easier to work in the time domain.

Prologue: You’ll be deriving the impulse response for various LTI filters given their
frequency responses. This is one way to compute the inverse Fourier transform.

Solution:
a)
M
H(e/?) = Z h[nle™/®n = 1 4 2¢7/3®
n=0
1, n=20
This is satisfied by h[n] = {2, n=3. So, h[n] = §[n] + 256[n — 3].
0, else
b)
M
H(e/?) = Z h[n]e™/on = 2¢7/3® cos(w) = e /30 (eI + 7J0) = ¢ /20 4 o7/4D
n=0
1, n=2
This is satisfied by h[n] = {1, n=4. So,h[n] = §[n—2]+6[n—4].
0, else
c)
u sin(5@) e JA5P (50 — p—J50)
H(e/?) = Z h[k]e 1@k = ¢=j45® = - _
. (&)\) eJj0/2 — p—jW/2
k=0 sin (=

M
1 L N 1 2 PN
eji“’ _ e—]9.5m — g h[k]e—}wk (ejzw —e sz)
k=0

Expanding the right side of the equation,

M

R 1. 1
> hlkle ik (/2° — ¢ 7/2%)
k=0

1 N N 3. ' R
= h[0]e’2® — h[0]e2° + h[1]e/2® — h[1]e 2% + ... + h[9]e /85D
- h[g]e—j9.5&) + ..
To make the e/®/2 terms equal on the left and right sides, h[0] = 1. Also, h[1] — h[0] = 0, so

h[1] = 1. Likewise, h[n]=1forn=2,3, .., 8. To make the —e 950 torm equal on the left
and right sides, h[9] = 1. All other values for h[n] are zero.
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Combining the above, we obtain h[n] = u[n] — u[n — 10]. This filter is a 10-point running
sum filter. Itis also an averaging filter whose impulse response has been scaled by 10.

Epilogue: Part (c) can also have been solved by matching the form of the frequency response
to that of a 10-point running sum filter.

Prologue: This question takes you back to the concepts that you learned before the midterm
#1 exam, and adds some complexity by processing the signal after discretizing it.
Solution:

a) h[n] = 6[n] => H(eja’) = 1. All discrete-time frequencies pass through the LTI system
unchanged. If the signal is not aliased by the Ideal C-to-D converter, then it can be faithfully
reconstructed by the Ideal D-to-C converter. The Nyquist theorem says that f; > 2f,.
Alternately, f, < %fs which means frequencies up to %fs can be faithfully reconstructed.

wo = 2m(500) = 2fy => fy = 500Hz. So, f; > 1000 Hz.
b) h[n] = §[n — 10] => H(eja’) — o100
i T
x(t) = 10 + 20 cos (wot + §) => x[n] = 10 + 20 cos (wnT; + 5)
T T
y[n] = x[n — 10] = 10 + 20 cos (wo(n —10)7Ts + §) =10 + 20 cos (wOnTS t3- 1Oa)0TS)

T
So,y(t) = 10 + 20 cos(wo(t — 10Ty) + §)

Comparing,we get, 10T = 0.001 => T; = 0.0001s => f; = 10kHz.

To get this signal, we additionally want the signal to pass unaliased through the C/D & D/C
converters. Hence, we want our signal to be sampled above the Nyquist rate.

f:g > Zfo => fo < SkHZ => Wy < 100007 I‘ad/s.

o o Sin(G®)  _ oo
c) Frequency response of the LTI system is given as H(ef‘") = 5—(1A) Jew

sin Ew
From (6.27), this is the frequency response of a 5-point running-average filter (p. 145).
We are given x(t) = 10 + 20 cos (wot + %) and would like y(t) = A for all values of t.

The Ideal C-to-D block samples x(t) to give x[n] = 10 + 20 cos (Dyn + g) where @y = %

We seek to filter out the cosine term 20 cos (@Wgn + g) completely. This will happen at

values of @, where magnitude response of H(eja’) goes to zero.
Here is the plot of the magnitude response of H(eja’):

w = -pi : 0.0001 : pi;
H = diric(w, 5) .* exp(-Jj*2*w);
plot(w, abs(H));
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On page 147, under item (d) in the upper left-hand corner, the zero values of the magnitude
response will occur at integer multiples of 2m/5 except at zero frequency. In the figure
window in MATLAB, | used the data cursor tool to estimate the discrete-time frequency
values at which the magnitude response goes to zeroover-m < & < m: -2.513,-1.257,
1.257 and 2.513. These correspond to -47/5, -27t/5, 27/5, and 4m/5.

. ~ w ~
Since @y = f—°, we have wy = @y f.
N

To give y(t) = 10:

* Two positive values are possible: wy = (En) (2000Hz) = 8007w and w, = 1600m.
* Two negative values are also possible: wyg = —800m and wy = —1600m.
* If we were to include the aliases, then any of the four frequencies shifted by an

integer multiple of 4000 would also work.

To give y(t) = 20:
hd wWo = 0

*  wq can be any integer multiple of 2 £, i.e. any integer multiple of 4000 .

Epilogue: The system introduced in this question can be used to describe a wide variety of
user 1/0 devices, simply by changing H(efa’). Can you think of some commonly used
devices that can be (roughly) modelled using this block diagram?

Prologue: This question introduces the z-transform, which is a generalization of the discrete-
time Fourier transform to the entire complex plane. It starts you off on simple properties of
the transform, which will be very useful in the future.

Solution:

Time delay property: x[n] = X(z) => x[n —ngy] - X(z)z™ ™.

Superposition property: x;[n] = X;(z) => Ya;x;[n] - Ya;X;(2).

a) x,[n] = 8[n] => X;(2) = ¥6[nlz™ = 1.
b) x5[n] = 8[n — 1] => X,(2) = X,(2)z"' =z L.
¢) x3ln] = 8[n— 7] => X3(2) = X,(2)z" =2z
d) x,[n] = 26[n] — 36[n — 1] + 48[n — 3]

X.(2) =2X,(2) =3X,(2)z7 '+ 4X,(2)z73 =2 —-3z71 + 4273,

Epilogue: In taking discrete-time Fourier transforms, z-transforms, and other related
transforms, it is common to use transform pairs and properties instead of the definition.



