EE 313 Linear Signals & Systems

Solution Set for Homework #5 on Frequency Response of FIR Filters & Z-transforms

By: Anyesha Ghosh & Prof. Brian L. Evans

1. **Prologue:** This problem revisits lowpass filters that you have had seen on several occasions, including homework assignments, tune-ups, and lecture. This problem provides more detail into the discrete-time Fourier transform, and asks you to calculate it analytically.

Solution: a)
$$h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

The discrete-time Fourier transform (frequency response) is

$$H(e^{j\widehat{\omega}}) = \sum_{n=0}^{M} h[n]e^{-j\widehat{\omega}n} = \sum_{n=0}^{M} (\delta[n] + 2\delta[n-1] + \delta[n-2])e^{-j\widehat{\omega}n}$$

$$= \sum_{n=0}^{M} \delta[n]e^{-j\widehat{\omega}n} + 2\sum_{n=0}^{M} \delta[n-1]e^{-j\widehat{\omega}n} + \sum_{n=0}^{M} \delta[n-2]e^{-j\widehat{\omega}n}$$

$$= 1 + 2e^{-j\widehat{\omega}} + e^{-j2\widehat{\omega}}$$

b) We factor the signal's discrete-time Fourier transform into magnitude-phase form in the same way that lecture slide 9-5 does:

$$H(e^{j\widehat{\omega}}) = 1 + 2e^{-j\widehat{\omega}} + e^{-j2\widehat{\omega}} = e^{-j\widehat{\omega}}(e^{j\widehat{\omega}} + 2 + e^{-j\widehat{\omega}}) = e^{-j\widehat{\omega}}(2 + 2\cos(\widehat{\omega}))$$

So, $|H(e^{j\widehat{\omega}})| = 2 + 2\cos(\widehat{\omega})$ and $\angle (H(e^{j\widehat{\omega}})) = -\widehat{\omega}$.

Although not asked, the phase is linear with slope of -1. Hence, the group delay through the FIR filter is 1 sample.

To plot: use freqz([1,2,1])

$$x[n] = 10 + 4\cos\left(0.5\pi n + \frac{\pi}{4}\right)$$

We evaluate the effect of the LTI FIR filter on each frequency component of x[n].

The signal x[n] has frequency components at $\widehat{\omega}=0$ and $\widehat{\omega}=\pm 0.5\pi$.

The frequency response at $\widehat{\omega}=0$ has value $H(e^{j0})=1+2+1=4$ and at $\widehat{\omega}=0.5\pi$ is

$$H\left(e^{j\frac{\pi}{2}}\right) = 1 + 2e^{-j\frac{\pi}{2}} + 1e^{-j\pi} = 1 + 2e^{-j\frac{\pi}{2}} - 1 = 2e^{-j\frac{\pi}{2}}$$

$$y[n] = (4)10 + \left(2e^{-j\frac{\pi}{2}}\right)4\cos\left(0.5\pi n + \frac{\pi}{4}\right) = 40 + 8\cos\left(0.5\pi n - \frac{\pi}{4}\right)$$

$$\begin{aligned} \mathbf{d}) \, x[n] &= \, \delta[n] \\ y[n] &= \, x[n] + 2x[n-1] + x[n-2] = \, \delta[n] + 2\delta[n-1] + \delta[n-2] \\ \text{So, } y[n] &= \begin{cases} 1, & n = 0 \\ 2, & n = 1 \\ 1, & n = 2 \\ 0, & else \end{cases} \\ \mathbf{e}) \, x[n] &= \, u[n] \\ y[n] &= \, x[n] + 2x[n-1] + x[n-2] = \, u[n] + 2u[n-1] + u[n-2] \\ \text{So, } y[n] &= \begin{cases} 0, & n < 0 \\ 1, & n = 0 \\ 3, & n = 1 \\ 4, & n > 1 \end{cases} \end{aligned}$$

Epilogue: Some of the above parts were easier to work in the frequency domain and others were easier to work in the time domain.

 Prologue: You'll be deriving the impulse response for various LTI filters given their frequency responses. This is one way to compute the inverse Fourier transform.
 Solution:

a

$$H(e^{j\widehat{\omega}}) = \sum_{n=0}^{M} h[n]e^{-j\widehat{\omega}n} = 1 + 2e^{-j3\widehat{\omega}}$$

This is satisfied by $h[n] = \begin{cases} 1, & n=0 \\ 2, & n=3 \\ 0, & else \end{cases}$. So, $h[n] = \delta[n] + 2\delta[n-3]$.

b

$$H(e^{j\widehat{\omega}}) = \sum_{n=0}^{M} h[n]e^{-j\widehat{\omega}n} = 2e^{-j3\widehat{\omega}}\cos(w) = e^{-j3\widehat{\omega}}(e^{j\widehat{\omega}} + e^{-j\widehat{\omega}}) = e^{-j2\widehat{\omega}} + e^{-j4\widehat{\omega}}$$

This is satisfied by
$$h[n] = \begin{cases} 1, & n=2 \\ 1, & n=4 \\ 0, & else \end{cases}$$
 So, $h[n] = \delta[n-2] + \delta[n-4]$.

c)

$$H(e^{j\widehat{\omega}}) = \sum_{k=0}^{M} h[k]e^{-j\widehat{\omega}k} = e^{-j4.5\widehat{\omega}} \frac{\sin(5\widehat{\omega})}{\sin(\frac{\widehat{\omega}}{2})} = \frac{e^{-j4.5\widehat{\omega}}(e^{j5\widehat{\omega}} - e^{-j5\widehat{\omega}})}{e^{j\widehat{\omega}/2} - e^{-j\widehat{\omega}/2}}$$

$$e^{j\frac{1}{2}\widehat{\omega}} - e^{-j9.5\widehat{\omega}} = \sum_{k=0}^{M} h[k]e^{-j\widehat{\omega}k} \left(e^{j\frac{1}{2}\widehat{\omega}} - e^{-j\frac{1}{2}\widehat{\omega}} \right)$$

Expanding the right side of the equation,

$$\begin{split} \sum_{k=0}^{M} h[k] e^{-j\widehat{\omega}k} \left(e^{j\frac{1}{2}\widehat{\omega}} - e^{-j\frac{1}{2}\widehat{\omega}} \right) \\ &= h[0] e^{j\frac{1}{2}\widehat{\omega}} - h[0] e^{-j\frac{1}{2}\widehat{\omega}} + h[1] e^{-j\frac{1}{2}\widehat{\omega}} - h[1] e^{-j\frac{3}{2}\widehat{\omega}} + \dots + h[9] e^{-j8.5\widehat{\omega}} \\ &- h[9] e^{-j9.5\widehat{\omega}} + \dots \end{split}$$

To make the $e^{j\widehat{\omega}/2}$ terms equal on the left and right sides, h[0] = 1. Also, h[1] - h[0] = 0, so h[1] = 1. Likewise, h[n] = 1 for n = 2, 3, ..., 8. To make the $-e^{-j9.5\widehat{\omega}}$ term equal on the left and right sides, h[9] = 1. All other values for h[n] are zero.

Combining the above, we obtain h[n] = u[n] - u[n-10]. This filter is a 10-point running sum filter. It is also an averaging filter whose impulse response has been scaled by 10.

Epilogue: Part (c) can also have been solved by matching the form of the frequency response to that of a 10-point running sum filter.

- Prologue: This question takes you back to the concepts that you learned before the midterm #1 exam, and adds some complexity by processing the signal after discretizing it.
 Solution:
 - a) $h[n] = \delta[n] => H\left(e^{j\widehat{\omega}}\right) = 1$. All discrete-time frequencies pass through the LTI system unchanged. If the signal is not aliased by the Ideal C-to-D converter, then it can be faithfully reconstructed by the Ideal D-to-C converter. The Nyquist theorem says that $f_{\mathcal{S}} > 2f_0$.

Alternately, $f_0 < \frac{1}{2}f_s$ which means frequencies up to $\frac{1}{2}f_s$ can be faithfully reconstructed. $w_0 = 2\pi(500) = 2\pi f_0 = > f_0 = 500 \, \mathrm{Hz}$. So, $f_s > 1000 \, \mathrm{Hz}$.

$$w_0 = 2\pi (500) = 2\pi f_0 = 500$$
 Hz. So, $f_s > 1000$ Hz.
b) $h[n] = \delta[n-10] = H(e^{j\hat{\omega}}) = e^{-j10\hat{\omega}}$.

$$x(t) = 10 + 20\cos\left(\omega_0 t + \frac{\pi}{3}\right) = x[n] = 10 + 20\cos\left(\omega_0 n T_s + \frac{\pi}{3}\right)$$

$$y[n] = x[n-10] = 10 + 20\cos\left(\omega_0(n-10)T_s + \frac{\pi}{3}\right) = 10 + 20\cos\left(\omega_0nT_s + \frac{\pi}{3} - 10\omega_0T_s\right)$$

$$So, y(t) = 10 + 20\cos(\omega_0(t - 10T_s) + \frac{\pi}{3})$$

Comparing, we get, $10T_s = 0.001 = T_s = 0.0001s = f_s = 10$ kHz.

To get this signal, we additionally want the signal to pass unaliased through the C/D & D/C converters. Hence, we want our signal to be sampled above the Nyquist rate.

$$f_s > 2f_0 => f_0 < 5 \text{kHz} => \omega_0 < 10000\pi \text{ rad/s}.$$

c) Frequency response of the LTI system is given as $H(e^{j\widehat{\omega}}) = \frac{\sin(\frac{5}{2}\widehat{\omega})}{5\sin(\frac{1}{2}\widehat{\omega})}e^{-j2\widehat{\omega}}$

From (6.27), this is the frequency response of a 5-point running-average filter (p. 145).

We are given $x(t) = 10 + 20\cos\left(\omega_0 t + \frac{\pi}{3}\right)$ and would like y(t) = A for all values of t.

The Ideal C-to-D block samples x(t) to give $x[n] = 10 + 20 \cos{(\widehat{\omega}_0 n + \frac{\pi}{3})}$ where $\widehat{\omega}_0 = \frac{\omega_0}{f_s}$.

We seek to filter out the cosine term $20\cos{(\widehat{\omega}_0 n + \frac{\pi}{3})}$ completely. This will happen at values of $\widehat{\omega}_0$ where magnitude response of $H(e^{j\widehat{\omega}})$ goes to zero.

Here is the plot of the magnitude response of $H(e^{j\hat{\omega}})$:

On page 147, under item (d) in the upper left-hand corner, the zero values of the magnitude response will occur at integer multiples of $2\pi/5$ except at zero frequency. In the figure window in MATLAB, I used the data cursor tool to estimate the discrete-time frequency values at which the magnitude response goes to zero over $-\pi < \widehat{\omega} \le \pi$: -2.513, -1.257, 1.257 and 2.513. These correspond to $-4\pi/5$, $-2\pi/5$, $2\pi/5$, and $4\pi/5$.

Since
$$\widehat{\omega}_0 = \frac{\omega_0}{f_s}$$
, we have $\omega_0 = \widehat{\omega}_0 f_s$.

To give y(t) = 10:

- Two positive values are possible: $\omega_0 = \left(\frac{2}{5}\pi\right)(2000 \text{Hz}) = 800\pi$ and $\omega_0 = 1600\pi$.
- Two negative values are also possible: $\omega_0 = -800\pi$ and $\omega_0 = -1600\pi$.
- If we were to include the aliases, then any of the four frequencies shifted by an integer multiple of 4000π would also work.

To give y(t) = 20:

- $\omega_0 = 0$
- ω_0 can be any integer multiple of 2 πf_s , i.e. any integer multiple of 4000 π .

Epilogue: The system introduced in this question can be used to describe a wide variety of user I/O devices, simply by changing $H(e^{j\widehat{\omega}})$. Can you think of some commonly used devices that can be (roughly) modelled using this block diagram?

4. **Prologue:** This question introduces the z-transform, which is a generalization of the discrete-time Fourier transform to the entire complex plane. It starts you off on simple properties of the transform, which will be very useful in the future.

Solution:

Time delay property: $x[n] \to X(z) => x[n-n_0] \to X(z)z^{-n_0}$. Superposition property: $x_i[n] \to X_i(z) => \sum a_i x_i[n] \to \sum a_i X_i(z)$.

a)
$$x_1[n] = \delta[n] = X_1(z) = \sum \delta[n]z^{-n} = 1$$
.

b)
$$x_2[n] = \delta[n-1] => X_2(z) = X_1(z)z^{-1} = z^{-1}$$
.

c)
$$x_3[n] = \delta[n-7] => X_3(z) = X_1(z)z^{-7} = z^{-7}$$
.

d)
$$x_4[n] = 2\delta[n] - 3\delta[n-1] + 4\delta[n-3]$$

 $X_4(z) = 2X_1(z) - 3X_1(z)z^{-1} + 4X_1(z)z^{-3} = 2 - 3z^{-1} + 4z^{-3}.$

Epilogue: In taking discrete-time Fourier transforms, z-transforms, and other related transforms, it is common to use transform pairs and properties instead of the definition.