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EE 313 Linear Signals & Systems

Solution Set for HW#6 on IIR filters

By: Anyesha Ghosh & Prof. Brian L. Evans

1. Prologue: This question asks you to calculate pole & zero locations for several systems, working
from their basic definition. It also asks you to visualize the locations on the complex plane.

Solution: For each solution, one can use the zplane command in Matlab to generate the pole-zero
plot for each difference equation or transfer function. The syntax is

zplane ( feedforwardCoefficients, feedbackCoefficients )

a)S;:y[n] = 09y[n — 1] + 0.5(x[n] + x[n — 1])

Y(z) 1+z7!
X(z) 1-09z71

Y(2z) =09Y(2)z71 + 05X (2)(1+z7Y) => H(2) =

So, H(z) hasazeroatz=-1,andapoleatz=0.9. zplane( [1 1], [1 -0.9] );

This corresponds to the Pole-Zero Plot #2.

This is a lowpass filter. Frequency-domain plots appear at end of the solution.
Note: The region of convergence is |z| > 0.9.
b)S,:y[n] = —0.9y[n — 1] + 9x[n] + 10x[n — 1]

Y(z) 9+10z7!

V(@) =-0.9Y @)z +X(2)(9+10z7) => H(z) = pre=1——70 =

So, H(z) has a zero at z=-10/9, and a pole at z=-0.9. zplane( [9 101, [1 0.9] );

This corresponds to the Pole-Zero Plot #3.

This is an all-pass filter. See the course handout on all-pass filters at

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%201%20Al1%20Pass%20Filters.pdf

Frequency-domain plots appear at end of the solution.

Note: The region of convergence is |z| > |-0.9| which is |z| > 0.9.

1-z71
140.9z71

¢)Ss: H(z) = %
So, H(z) has a zero at z=1, and a poleatz=-0.9. zplane( [1 -1]1, [1 0.9] ):

This corresponds to Pole-Zero Plot #6.

This is a highpass filter. Frequency-domain plots appear at end of the solution.

Note: The region of convergence is |z| > |-0.9| which is |z| > 0.9.

d) S, y[n] = ix[n] + x[n—1] + zx[n —2]+x[n—-3]+ ix[n — 4]
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1 3 1 1 3 1
Y(z) = X(2) <Z+ z71 +§z_2 +z73 +ZZ_4) =>H(z) = Z+ z 7 + EZ_Z +z73+ ZZ_4

Writing H(z) in terms of z (instead of z71), we get

0.25z%+23+1.522+2z+0.25 _ 0.25(z*+4z3+62%+4z+1) _ 0.25(z+1)*
z* - z* - z* )

H(z) =

So, H(z) has 4 poles, all at z=0, and 4 zeroes, all at z=-1. zplane( [0.25 1 1.5 1 0.25] );

We see that none of the pole-zero plots shown meet these requirements. So, this system does not
correspond to any of the plots.

This is lowpass filter. Frequency-domain plots appear at end of the solution.

Note: The region of convergence is z = 0.

z*—z3+22—z+41

e)Se:H(z)=1—z14+z2-z3+z7%= — = H,(z)/Hy(2)

So, H(z) has 4 poles, all at z=0. Note: The region of convergence is z = 0.

Since the numerator has only real coefficients and a degree of 4, the following must hold: (1) it has 4
roots, and (2) the roots are either real or occur in complex-conjugate pairs.

2 ...,0™ 1), Specifically, let us take n=5.

Let us consider the nth roots of unity (1, w, w
We know thatforanyn, 1+ w + w? + -+ w™ 1 =0. ..Property(1)
Replacing w with —w, we get, forn =5,

1-(—w) + w? — (—w3) + w* = 0, which exactly matches the numerator polynomial. So, the roots
of H,,(2) are the 5" roots of -1.

Roots of H,(2): = —w, —w?, —w3,—w* = —e5 ,—e5 ,—es5,—es =e 5 ,e5,e5,e5

Using MATLAB to compute the zeroes,

roots( [1 -1 1 -1 17 )

we obtain
-0.3090 + 0.95115
-0.3090 - 0.95117
0.8090 + 0.58787
0.8090 - 0.58787

which matches with the answer above.

This corresponds to Pole-Zero Plot #5.

This is a highpass filter. Frequency-domain plots appear at end of the solution.
Note: The region of convergence is z = 0.
f) Sg: y[n] = x[n] + x[n — 1] + x[n — 2] + x[n — 3]

Y2)=X(2) (A +z1+z2+273)



EE 313 Fall 2017 Linear Signals & Systems | The University of Texas at Austin

Y(z 1+z42z%2+23 H,(z
()=1+Z_1+Z_2+Z_3= = n(2)

0 =x@ A Ha@)

So, H(z) has 3 poles,allatz = 0: freqz( [1 1 1 1] );

As in part (e), the following hold for the zeroes: (1) There are 3 zeroes, (2) They are either real or
occur in complex conjugate pairs.
Using Property (1), we see that the zeroes of H(z) = w, w?, w3 (the fourth roots of unity).

jnr  2jm 3jm
2

So, the zeroesareez,e 2 ,e 2 =j,—1,—j: zplane( [1 1 1 1] );

This corresponds to the Pole-Zero Plot #4.

This is a lowpass filter. Frequency-domain plots appear at end of the solution.

Note: The region of convergence is z = 0.

g)S,:y[n] = x[n] + x[n — 1] + x[n — 2] + x[n — 3] + x[n — 4] + x[n — 5]
Y@ =X(2)(A+z 1 +z2+2z3+2z7%+27%

Y(z 1+z+22+234+2*+2725 H, (z
H(z)=—()=1+z‘1+z‘2+z‘3+z‘4+z‘5= - (@)

X(2) z5 " Hy(2)

So, H(z) has5poles,allatz=0: zplane( [1 1 1 1 1 1] );
As in part (f), the following hold for the zeroes: (1) there are 5 zeroes, and (2) they are either real or
occur in complex conjugate pairs.

Using Prop. (1), we see that the zeroes of H(z) = w, w?, w3, w*, w® (the sixth roots of unity).

jmr  2jm  3jm  4jm  5jm jm 2jm —jm —2jm
3

So, the zeroesarees,e s ,e 3 ,e 3 ,e3 =e3,e3,—1,es3 ,e 3 .

This corresponds to the Pole-Zero Plot #1.

This is a lowpass filter. Frequency-domain plots appear at end of the solution.
Using MATLAB to compute the zeroes, we get,
Z=0.5+0.866j, 0.5-0.866j, -1, -0.5+0.866j, -0.5-0.866j, which matches with the answer above.

Frequency-Domain Plots. MATLAB code for plotting the frequency responses of the filters follows:

freqz ([1,1]1,11,-0.91);

figure;

freqz ([9,10],[1,0.9]);
figure;

freqgz ([1,-11,11,0.9]);
figure;

freqgz ([0.25,1,1.5,1,0.25]);
figure;

freqz ([1,-1,1,-1,1]);
figure;

freqgz ([1,1,1,1]1);
figure;

freqz([(1,1,1,1,1,1]);
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As we can see, the frequency selectivity of the filters is (in order): lowpass, allpass, highpass,
lowpass, highpass, lowpass, lowpass.

Epilogue: As you can see above, some basic algebra helps a lot in finding the roots of the numerator
& denominator polynomials. Another fact that you may have noticed is that the number of poles and
zeroes is equal for all the systems in the question. This is something that holds for all LTI systems
(counting zeroes and poles at o= as well).

2. Prologue: This question asks you to compute a simple IR filter output by performing an analysis in
the z-domain. It also deals with the steady state response of the system, which is explained in
Section 8-8 of the Signal Processing First textbook.

Solution:
a) y[n] = %y[n — 1] + x[n] with the initial condition y[-1] = 0.

Y(Z) =5Y(@)z 7t + X(2) => Y (2)(1 - 0.5271) = X(2)

(00 o 1
X = Z -n — Z e 3
(z) uln]z z =
n=—oo n=0
1 1 A B

) =T T T 05,1 1-27  1-05.1

So,A+B=1-054—B=0=>A=28=>A=25=1/3.

g =2 1gcn
+ 3. o= = yInl = Sulnl +5.0.5Mun].

y(z)=§.1

1
_z-1

(Using the z-transform for a™u[n] derived in homework problem 6.4 & lecture slide 11-5.).

b)X(z) = X%, ej"n/4u[n]z‘n =y elmn/4,—n — 1jn
1-¢%
Y(2) = 1 1 B A N
o | ' 1-05z71  1—e/m/4z7t T 1-05z7 (say)

S0,A—054z"14+B—e/™*;7 1B => A+ B =1054A+¢e/™*B =0=> A= —2e/"/*B

— jT[/4 = = = —1 = — ze*
B(1-2e/"/*)=1=>B=—"rA -
1 jr(n+1)
=>y[n] = =(—2e + u[n]+ 0.5"u[n])
1-2e4

c) Part (c) from the book was not assigned, but its solution is provided for reference.

ylnl = —5 (=265 ulnl + 05muln) = —5 (~2e%e  uln)) + —5 (0.5™uln))

LS LS T
1—-2e 4 1-2e 4

1-2e 4

The second term dies out for large n, and is called the transient component. The first term remains
constant in magnitude for all n, and hence represents the steady-state component.
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jm
Y(2) 1 i 2e'%
H&)=X&)=(1_05[4)=>H<e4)=—1_25%

As we can see, the coefficient of x[n] in the steady state component is exactly the same as the
frequency response at w = m/4. So, both the magnitude and the phase response will be identical to
that for the steady state coefficient.

d) Draw the block diagram for the input-output relationship for the system in the time domain:

R - >y’

]

006

Epilogue: The system response to a sinusoidal signal starting at a point time (which holds for
practical situations in which observations start at a point in time) contains transient and steady-state
components. The transient component (in absolute value) becomes smaller as n increases.

3. Prologue: This question continues with concepts explored in the previous problems. In addition, it
asks you to do inverse z-transforms by using properties introduced in the previous homework.

Solution:
in —jn (1—2_1)(1—<e_j7n+ej7n>z_1+z_2)
H _ Y@ _ (a-zbHa-ezz H(a-ez z7l
a) (Z) - % - j2m j2m - j2m —j2m

(1-0.9¢ 3 z71)(1-09e™ 3 z71) (1—0.9<eT+eT>z—1+0.81z—2)
Y(z)(14+ 0812724+ 09z ) =X2)A -z YA +2z2)=X2)A-z1+2z72-273)

y[n] + 0.9y[n — 1]+ 0.81y[n — 2] = x[n] — x[n — 1] + x[n — 2] — x[n — 3]

b) For the pole-zero plot, we are using zplane( [1 -1 1 -1], [1 0.81 0.9] )

Imaginary Part
& o o o o
(=] N S o )
—

I
N
T

1 0.5 05 1

0
Real Part

c) x[n] = Ae/®Pei@on => X(ej“’) = Ae/?5(w — wy). Note that §(w) is the Dirac delta functional,
which is discussed in Section 9.2 of Signal Processing First.

Now, y[n] = 0 =>¥(e/®) = 0 Vw € [-m, 7] => H(e/®)X(e/?) = 0.
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Since X(e/®) = 0V w # w, the only condition on H(e/®) is that H(e/“°) = 0.

So, wg is a zero of H(z) lying on the unit circle. From the plot above, we can read off the values of the
zeros. So, wy = 0, /2, —m /2.

d) We use the command freqz( [1 -1 1 -1], [1 0.81 0.9] )
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This is a high-pass filter. Note the discontinuity in the phase response at wy = m/2 which is a
frequency component that is zeroed out according to the magnitude response at w, = /2.

The code for generating the plots above would be:

num=[1,-1,1,-17];
den = [1,0.9,0.81];
zplane (num, den) ;
figure;

fregz (num, den) ;

Epilogue: What would happen in part (c) if some of the zeroes were outside the unit circle? How
about if they were inside?

4. Prologue: This question asks you to find the convolution of two signals, this time by going to the z-
domain. The time domain convolution is shown in Handout F on Canvas, which is also available at

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20F%20Convolution%20Exp%20Sequences.pdf

Solution:

a) x1[n] = a™u[n], x,[n] = b™uln].

_ I S 1
X,(z) = Z x1[n]z™™ = Z uln]a™z™™ = ZO az " e pp— if |z| <al.
n=

n=-—oo n=—oo

- 1 ,
Similarly, X,(z) = Py if |z| < |bl. In general, constants a and b could be complex-valued.
Since convolution in the time domain corresponds to a multiplication in the z-domain, we get

1 A B
Y(Z) T (1-az~1)(1-bz"1) = 1-az~1 ' 1-bz-

- for some A, B. ..eqn.(1)

This approach is known as partial fractions decomposition.

We solve for 4, B by putting the rightmost term over a common denominator and equating the
numerators, we get A+ B — z~1(bA + aB) = 1V z. This gives us two equations in two unknowns.
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> A+B=1bA+aB=0=>4=-ZL=>p(1-)=1=>B=-" 4= -2
a 1 b 1
2 Y@= T T e T
= y[n] = —ﬁ.a"u[n] +ﬁ.b"u[n] = ﬁ. (b™*1 — a™ u[n].
b) Sinceb:a,Y(z) :m.

Here are two approaches for using the inverse z-transform to find a closed-form expression for y[n].

Approach #1: Use partial fractions decomposition. Y(z) has two poles at z = b, and the partial
fractions method for the case of repeated poles is not covered in the textbook. Here's the approach:
1 Azt N B _Az7'+B(1—-bz)
(1—bz )2 (1—bz )2 1-—bz1 (1 —-bz71)2

Put the two terms on the right-hand side over a common denominator and equate numerators:
Az7'+B(1-bzH) =1
This gives two equations in the two unknowns: A-b=0 and B=1 which gives A=band B=1.

bzt N 1
(1-bz71)2 1-—bpz1?

Y(z) =
For the inverse z-transform for the leftmost term, we’ll need to use a z-transform table, as
mentioned in Approach #2 below.
y[n] = nb™u[n] + b™u[n] = (n + 1)b™u[n]

Approach #2: Use z-transform tables and properties. Wikipedia has useful information on the z-
transform at https://en.wikipedia.org/wiki/Z-transform. We seek to find the inverse transform of

1

Y(z) = —m——
@ =G5
The row 13 in the table of transform pairs will match the above form if we rewrite it as

Y@) (1 ) bz~t (1 )X
D=3 Tz - B
The inverse z-transform is given by row 13 as
x[n] = nb™u[n]
In the z-transform, multiplying by constant (1/b) will become as scaling by the same amount in the
time domain. Multiplying by z in the z-domain means advancing time by one sample.

1 1
yln] = Bx[n +1] = B(n + Db un + 1]

Note that (1/b) ™" = b ™' = b". We can write u[n+1] = 8[n+1] + u[n] and use y[-1] = 0:
y[n] = (n+1) b" u[n]

Epilogue: This question goes over partial fraction decomposition, which is a commonly used
technique when a difficult problem can be expressed as a weighted sum of simpler terms that are
easier to solve. This technique is widely used in calculus, especially in integration.



