EE 313 Linear Signals & Systems

Solution Set for HW#7 on Continuous Time Signals & Systems

By: Anyesha Ghosh & Prof. Brian L. Evans

Here are several useful properties of the Dirac delta functional.

- a) Dirac delta: $\int_{-\infty}^{\infty} \delta(x) dx = 1$
- b) Sifting property: $\int_a^b f(x)\delta(x-x_0)dx = \begin{cases} f(x_0), x_0 \in [a,b] \\ 0 \end{cases}$, otherwise
- c) Even symmetry: $\delta(x) = \delta(-x)$
- d) Relationship to the unit step function. $\frac{d}{dx}u(x) = \delta(x)$.

Here are several comments about bounded-input bounded-output (BIBO) stability:

- e) <u>BIBO Stability:</u> If input x(t) is bounded in amplitude, i.e. $|x(t)| \le B$ for a finite value B, then output y(t) is always bounded in amplitude, i.e. $|y(t)| \le B_1$ for a finite value B_1 . This definition does not require the system to be LTI.
- f) <u>BIBO stability for LTI systems:</u> For a continuous-time LTI system with an impulse response h(t), BIBO stability reduces to $\int_{-\infty}^{\infty} |h(t)| dt < \infty$. A derivation is given in problem 3 below.
- g) <u>BIBO stability for FIR filters:</u> From f), it immediately follows that FIR filters are always BIBO stable (if $|h(t)| < \infty$ for all t). This is also reflected in the fact that all the poles of an FIR filter are at z=0 (inside the unit circle), which implies stability.
- h) <u>Convolution:</u> Let $c(t) = x(t) * y(t) => c(t) = \int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t-\tau) y(t) d\tau$

1. Solution:

a)
$$y(t) = e^{x(t+2)}$$

This system fails the all-zero input test. That is, when x(t) = 0 for all t, y(t) = 1 instead of 0. Linearity does not hold.

Alternate answer: Let $x_1(t) = a \ x(t) => y_1(t) = e^{x_1(t+2)} = e^{a \ x(t+2)} = \left(y(t)\right)^a$ So, $y_1(t) \neq ay(t)$. So, homogeneity doesn't hold & the system is not linear.

- ii) $x_{shifted}(t) = x(t-t_0) => y_{shifted}(t) = e^{x_{shifted}(t+2)} = e^{x(t-t_0+2)} = y(t-t_0)$ So, $y_{shifted}(t) = y(t-t_0)$. So, the system is time-invariant. Note that the system is pointwise, and all pointwise systems are time-invariant.
- iii) When $|x(t)| \le B \quad \forall t$, it means that $-B \le x(t) \le B \quad \forall t$ which in turn means $e^{-B} \le x(t) \le e^B \quad \forall t$. So, a bounded input generates a bounded output and hence the system is stable.
- iv) y(t) is a function of a future value of x(t) viz. x(t+2). So, this system is not causal.

b)
$$y(t) = \cos(w_c t + x(t))$$

This system fails the all-zero input test. That is, when x(t) = 0 for all t, then $y(t) = \cos(w_c t)$ which is not zero for all t.

Alternate solution: Let $x_1(t) = a x(t) => y_1(t) = \cos(w_c t + x_1(t)) = \cos(w_c t + a x(t))$. So, $y_1(t) \neq a y(t)$. So, homogeneity doesn't hold & system is not linear.

ii) $x_{shifted}(t) = x(t-t_0) => y_{shifted}(t) = \cos\left(w_c t + x_{shifted}(t)\right) = \cos\left(w_c t + x_$

- Regardless of the value of x(t), $-1 \le y(t) \le 1 \ \forall t$ since y(t) is a cosine. So, a bounded input would generate a bounded output and hence the system is BIBO stable.
- iv) y(t) is a function of only the current value of x(t). So, this system is causal.

c)
$$y(t) = [A + x(t)]\cos(w_c t)$$

This system fails the all-zero input test. That is, when x(t) = 0 for all t, we have $y(t) = A\cos(w_c t)$ instead of 0. Linearity does not hold.

Alternate answer: Let
$$x_1(t) \to y_1(t)$$
 and $x_2(t) \to y_2(t)$ $ax_1(t) + bx_2(t) \to y(t) = [A + ax_1(t) + bx_2(t)]\cos(w_c(t))$ $y(t) = [aA + ax_1(t)]\cos(w_c t) + [bA + bx_2(t)]\cos(w_c t) + A(1 - a - b)$ $\therefore y(t) = ay_1(t) + by_2(t) + A(1 - a - b) \neq ay_1(t) + by_2(t) \ \forall A \neq 0$. So, the system is not linear.

- ii) Let $x_{shifted}(t) = x(t t_0)$ $\therefore y_{shifted}(t) = [A + x_{shifted}(t)] \cos(w_c t) = [A + x(t - t_0)] \cos(w_c t)$ $y(t - t_0) = [A + x(t - t_0)] \cos(w_c(t - t_0)) \neq y_s(t).$ So, the system is time-varying.
- iii) If $|x(t)| \le B \ \forall t$, then $|y(t)| = |[A + x(t)]\cos(w_c t)| = |A + x(t)||\cos(w_c t)|$ So, a bounded input generates a bounded output and hence the s/m is stable.
- iv) Clearly, y(t) is a function of the current value of x(t). So, this s/m is causal.
- d) System computes the even part of the input signal: $y(t) = \frac{x(t) + x(-t)}{2}$
- System passes the all-zero input test; that is, when x(t) = 0, y(t) = 0. So, we have to prove that the property either holds or does not hold.

Let
$$x_1(t) \to y_1(t) \& x_2(t) \to y_2(t)$$
.
$$ax_1(t) + bx_2(t) \to \frac{(ax_1(t) + bx_2(t)) + (ax_1(-t) + bx_2(-t))}{2} := y(t)$$
 So, $y(t) = \frac{a(x_1(t) + x_1(-t))}{2} + \frac{b(x_2(t) + x_2(-t))}{2} = ay_1(t) + by_2(t)$

So, the system satisfies the linearity property and is hence, linear.

ii) When $x(t) = \sin(2\pi t)$, we have y(t) = 0. Let $\tau = \frac{1}{4}$, $x_{shifted}(t) = x(t-\tau) = \sin(2\pi (t-\frac{1}{4})) = \sin(2\pi t - \frac{1}{4}) = \cos(2\pi t)$ and $y_{shifted}(t) = \cos(2\pi t)$ but this does not equal $y(t-\tau)$.

Alternate solution: Let
$$x_{shifted}(t) = x(t - t_0) = >$$
,

$$y_{shifted}(t) = \frac{x_s(t) + x_s(-t)}{2} = \frac{x(t - t_0) + x(-t - t_0)}{2}$$
$$y(t - t_0) = \frac{x(t - t_0) + x(-(t - t_0))}{2} = \frac{x(t - t_0) + x(-t + t_0)}{2}.$$

So, $y_{shifted}(t) \neq y(t-t_0)$. The system is not time-invariant.

iii) If
$$|x(t)| \le B \ \forall t$$
, then $|y(t)| = \left|\frac{x(t) + x(-t)}{2}\right| = \frac{1}{2}|x(t) + x(-t)| \le \frac{1}{2}|x(t)| + \frac{1}{2}|x(-t)| \le \frac{1}{2}B + \frac{1}{2}B$. Hence, $|y(t)| \le B$. Yes, system is BIBO stable.

iv) Let t = -1. Then $y(-1) = \frac{x(-1) + x(1)}{2}$, which clearly depends on a future value of x(t) viz. x(1). System is not causal.

2. Solution:

a)
$$\int_0^{10} e^{-(t-4)} u(t-4) \delta(t-5) dt$$

= $e^{-(5-4)} u(5-4)$ (Using sifting property of $\delta(t)$)
= $e^{-1} u(1) = e^{-1}$

b)
$$\int_{-\infty}^{t-5} \delta(\tau - 1) d\tau = \begin{cases} 1, -\infty < 1 \le t - 5 \\ 0, & else \end{cases} = \begin{cases} 1, & t \ge 6 \\ 0, & else \end{cases}$$

$$(Using $\int_a^b \delta(t) dt = \begin{cases} 1, & 0 \in [a, b], b > a \\ 0, & otherwise \end{cases}$

$$c) \frac{d}{dt} \Big(e^{-(t-4)} u(t-4) \Big) = -e^{-(t-4)} u(t-4) + e^{-(t-4)} \delta(t-4)$$

$$= e^{-(t-4)} (\delta(t-4) - u(t-4))$$

$$(Using $\frac{d}{dt} (u(t)) = \delta(t)$)
$$d) \delta(t-1) * \delta(t-2) * \delta(t) = (\delta(t-1) * \delta(t-2)) * \delta(t)$$

$$= \left(\int_{-\infty}^{\infty} \delta(\tau - 1) \delta(t-\tau - 2) d\tau \right) * \delta(t)$$

$$= \delta(t-3) * \delta(t) = \left(\int_{-\infty}^{\infty} \delta(\tau) \delta(t-\tau - 3) d\tau \right) = \delta(t-3)$$$$$$

3. Solution:

A continuous-time LTI system is bounded-input bounded-output (BIBO) stable if its impulse response h(t) satisfies $\int |h(t)| dt < \infty$

For a derivation of this condition, let x(t) be any bounded input. Then $|x(t)| \le B$ for some positive B. Then,

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

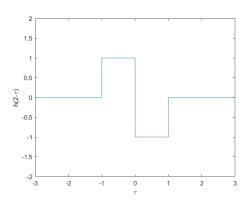
$$|y(t)| = \left| \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau \right| \le \int_{-\infty}^{\infty} |h(\tau)x(t-\tau)|d\tau \le \int_{-\infty}^{\infty} |h(\tau)||x(t-\tau)|d\tau$$

$$|y(t)| \le B \int_{-\infty}^{\infty} |h(\tau)|d\tau$$

So, $\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty => |y(t)| < \infty \ \forall \ t \ (Condition \ for \ BIBO \ stability).)$

a)
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = 1 + 1 = 2$$
 Since
$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$
, the system is BIBO stable.

b)



c) $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau = > y(2) = \int u(\tau)h(2-\tau)d\tau$ $So, y(2) = \int_{0}^{\infty} h(2-\tau)d\tau$. Hence, y(2) can be calculated by summing the area under the graph in part (b) over the interval $[0,\infty)$. So, y(2) = -1.

d)
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$

= $\int_{0}^{\infty} h(t-\tau)d\tau = \int_{t}^{-\infty} h(\tau')(-d\tau')$ (Substituting $\tau' = t - \tau$)

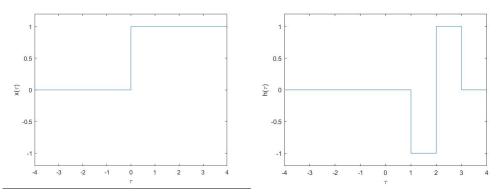
$$= \int_{-\infty}^{t} h(\tau')d\tau' = \begin{cases} 0 & ,t < 1 \\ -(t-1) & ,1 \le t < 2 \\ (t-2)-1 & ,2 \le t < 3 \\ 0 & .3 < t \end{cases} = \begin{cases} 0 & ,t \in (-\infty,1) \cup [3,\infty) \\ 1-t & ,t \in [1,2) \\ t-3 & ,t \in [2,3) \end{cases}$$

So, $T_1 = 1 \& T_2 = 3$.

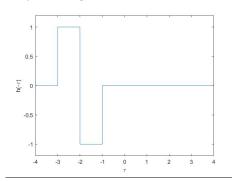
Graphically, this integration is worked out as follows:

Convolution Integral formula: $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$

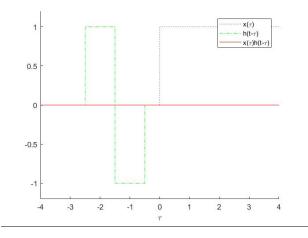
Step 1: Take $x(\tau)$ and $h(\tau)$.



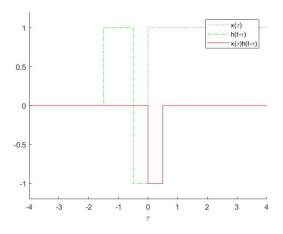
Step 2: Flip $h(\tau)$ around the y-axis to generate $h(-\tau)$.



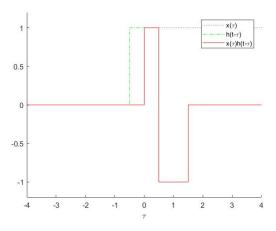
<u>Step 3</u>: Shift $h(-\tau)$ right by t to generate $h(t-\tau)$. Multiply it by $x(\tau)$ to generate $x(\tau)h(t-\tau)$ (the function being integrated in the convolution). Plots for each of the four intervals of interest are shown below.



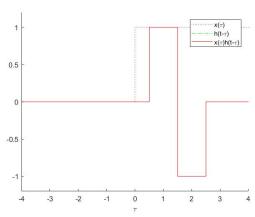
_ t < 1, no overlap



1<= t < 2, overlap of length t-1.



2<= t < 3, overlap of length t-1.



3 <= t, overlap of length t-1.

Step 4: Find the area under the plot for $x(\tau)h(t-\tau)$. This step performs the integration from $-\infty$ to ∞ .

Looking at the plot,

For t<1, there is no overlap, and the net area is 0.

For $1 \le t \le 2$, the net area is -(t-1) = 1-t.

For $2 \le t \le 3$, the net area is -1*1+1(t-1-1) = -1+t-2 = t-3.

For $3 \le t$, the net area is -1*1+1*1 = 0.

This matches the answer derived above.

4. Solution:

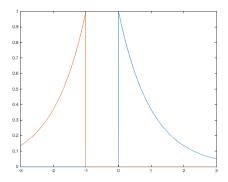
$$y(t) = e^{-at}u(t) * e^{-at}u(t)$$

$$= \int_{-\infty}^{\infty} e^{-a\tau} u(\tau) e^{-a(t-\tau)} u(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} e^{-at} u(\tau) u(t-\tau) d\tau$$

The term $u(\tau)$ is 1 when $\tau \ge 0$ and 0 otherwise. So, the lower limit in the integral becomes 0. The term $u(t-\tau)$ is 1 when $t-\tau \ge 0$ and 0 otherwise. With $t \ge \tau$ and $\tau \ge 0$, we have $t \ge \tau \ge 0$. So, the upper limit in the integral becomes t. For t > 0,

$$y(t) = \int_0^t e^{-at} d\tau = e^{-at} \int_0^t d\tau = te^{-at}$$

When t < 0,



and there is no overlap between $e^{-a\tau}u(\tau)$ and $e^{-a(t-\tau)}u(t-\tau)$.

The complete answer is

$$y(t) = te^{-at}u(t)$$

Comparing this with Exercise 9.4 on page 265 of the *Signal Processing First* textbook, we see that $y(t) = \lim_{b \to a} y_{ex}(t)$, which is the expected behavior.

Also, compare this answer to the discrete-time version of the problem in the Handout F on Convolution of Two Exponential Sequences in discrete time at

 $\frac{\text{http://users.ece.utexas.edu/}^\text{bevans/courses/signals/handouts/Appendix\%20F\%20Convolution\%20Exp\%20Sequences.pdf}{}$