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EE 313 Linear Signals & Systems

Solution Set for HW#8 on Continuous Time Freq. Resp. & Fourier Trans.

By: Anyesha Ghosh & Prof. Brian L. Evans

1. Prologue: This question revisits the Fourier series sum (taught earlier in the course) and asks
you to visualize the effect of various filters on a periodic continuous-time signal.
Solution:
a) The Fourier series representation of a periodic signal x(t) with period T is:
[00)

x(t) = Z akejk(ZTn)t

—00
From the graph, T = 8 seconds => w, = Z?H = %ﬂ = % rad/s.

1 4 101
' , a0=§f_4x(t)dt=§f_110dt
The formulae for evaluating a;'s are

2T

. 2T .
ax =2 2@e T ae = 11100 T e
The a,terms follow a sinc pattern, i.e. ax = 2.5 sin(w k/4) / (7 k/4).
b)
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The high pass filter removes the signal component at 0 Hz. This is equivalent to removing the
DC component (average value) of the original signal. So, the filtered signal is the original

signal shifted down by its average value (ay =2.5).
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d) For getting an output of the form y(t) = A + B cos(wgt + ¢), we'll need a non-zero

spectral component at w = 0, and spectral components at w = wg and w = —wy.
So, to retain the required spectral lines, we want 1 < % <2=> wy < we < 2wy.
0

e) H(ej“’) =1-e72/9 => h(t) = §(t) — §(t — 2) by using the inverse continuous-time
Fourier transform. So, y(t) = x(t) * h(t) = x(t) * (S(t) —-6(t— 2)) =x(t) —x(t—2)

x(t)-x(t-2)

y(t)=
N

f)

The magnitude response has multiple passbands and regularly spaced notches.

Epilogue: As seen in tune-up 11 & the miniproject, the last filter (a.k.a. a comb filter) can be

used to simulate the effect of echoes and reverberation on acoustics, electromagnetic and
other signals.



Fall 2017 EE313 Linear Signals & Systems | The University of Texas at Austin

Prologue: This question asks you to use several Fourier transform pairs and properties to
evaluate the transforms on several common signals.
Solution:

. t 2 .
a) Properties used: rect (;) © =sin (%)

t 2
u(t+ 3)u(3 —t) =rect (E) o ;.sin Bw)

b) Properties used: sin(w) = (/¥ — e /?)/2j
e/9ot & 28 (w — wy)

sin(4mt) sin(50mt) = —(e/4™t — g ~J4Tt) (gJ50ML _ o=J50mLY /4

sin(4mnt) sin(50mt) < — 4m?[(6(w — 4m) — 8w + 4”))4* (6(w — 50m) — §(w + 50m))]

o —nm?[6(w — 541) — §(w + 46m) — 6 (w — 461) + §(w + 54m)]

c) Properties used: sin(w) = (/¥ — e /?)/2j
e/9ot & 28 (w — wy)

sin(mt) . w
H —
mt rec (271)
Sln(4nt) sin(507t) = 4 sin(41t) . ejsom_?—jsom
4mt 2j
o4 [rect (i) xZ (S(w —50m) —6(w + SOn))]
8T J
w— 501 w+ 507
<—> — rect( ) —rect (—)]
8m
d) Properties used: rect (5) o Zsin (ﬂ)
' T 13 2

sin(200w)\2 1 Si“(‘wo(%)) ’ 1 t t
(T) =;<#> ‘*z(re“(m)*“’“(m))

2

2 _
rect (5) * rect (E) = foo rect( )rect( a) da = fT/ rect (t—a) da
T T - T -7/2 T

0, ER S lostse
T 2
= Jr—ltl, —7<t<T

t+t/2
0, t+t/2
T

<—%=>t< —1

Please see Course Handout E on Convolving Two Rectangular Pulses.

_ 5 0, t > 400
So, (&jow)) o %(rect (ﬁ) x rect (ﬁ)) - {100 — |t]/4, — 400 < t < 400.
0, t < —400

e) Properties used: cos(w) = (/¥ + e /) /2
6(t - to) Ud e_jwto

cos?(w) = ((e/° +e77°)/2)? o m?[(§t+ 1D +8(t—1)* (6 +1)+8(t—1))]

om?[f(t—-2)+6(t+2)+6@)+6)] =m?[6(t—2)+ 6+ 2)+25()]
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Code:

%Q2a)

t=-4:0.001:4;

w = -10:0.001:10;

plot (t, rectpuls(t/6));xlabel ('t"');ylabel ("x(t)"');

figure;

plot (w, (2./w) .*sin(3.*w)) ;xlabel ('\omega') ;ylabel ('X(j\omega) ") ;
figure;

%Q2b)

plot(t,sin(4*pi*t) . *sin(50*pi*t)) ;xlabel ('t");ylabel ('x(t)");xlim([-1,11);
figure;

wl =[54*pi,-46*pi,46*pi,-54*pi];

m = (-pi*~2).*[1,-1,-1,1]1;

stem(wl,m);xlabel ('\omega');ylabel ('X(j\omega) ') ;x1lim([-60*pi, 60*pi]);
figure;

%Q2c)

plot (t, (sin(4*pi*t) ./ (pi*t)) .*sin(50*pi*t)) ;xlabel ('t");ylabel ('x(t)");
figure;

wl = -200:0.001:200;

plot (wl,4*pi* (rectpuls(wl/ (8*pi)-50/8)-

rectpuls (wl/ (8*pi)+50/8)));xlabel ('\omega');ylabel ('X(j\omega) ') ;
figure;

%02d)

tl = -500:0.01:500;

x1 = 100-abs(tl)/4;

x1 = x1 .*(tl < 400 & tl1 > -400);
plot(tl,x1);xlabel('t"');ylabel ('x(t)");

figure;

plot (w, (sin(200*w) ./w) ."2) ;xlabel ('\omega') ;ylabel ('X(j\omega) ') ;x1im([-0.5,0.5]);
figure;

%Q2e)

tl=[-2,0,2];

x1l = (pi*2).*[1,2,1]1;
stem(tl,x1);xlabel ('t');ylabel ('x(t)");x1lim([-3,3]);

figure;

plot (w,cos (w) .”2);xlabel ('\omega');ylabel ('X(j\omega) ")

For parts (a) through (e), the time-domain plot will be on the left, and the frequency-domain plot
will be on the right. Since MATLAB cannot plot Dirac deltas, the frequency domain plot for (b) and
the time-domain plot for (e) will be a Fourier series coefficient plots.
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Interpret plot on right as a Fourier series that represents Dirac deltas of areas -10, 10, 10 & -10:
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Interpret the plot on left as a Fourier series plot having Dirac deltas with areas of «?, 2 n° and 7i°.
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Epilogue: As we can see, a large variety of Fourier transforms can be decomposed down
into the “standard” transform pairs. This provides a powerful technique for hand analysis of
continuous (and even discrete) time signals.

3. Prologue: This question deals with a time limited sinusoid, which is what the idealized
sinusoid boils down to in any real-life context.
Solution:
a) Code:
t=-0.5:0.001:1.5;
f = 10;
c = cos(2*pi*f*t).*rectpuls(t-0.5);
plot(t,c):

xlabel ("t'");ylabel('c(t) "),

08| | '”> !”‘ \"' l'l| i "" |
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| ‘l
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04t “HH
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b) c(t) = cos(2rf.t)rect(t — %)
Properties used: cos2mf.t) = (e/?™et 4 g=J2mfcty /2
e/9ot & 28 (w — wy)

rect(t) © %sin (%) = sinc (%) [sinc(x) =

sin(x)

x(t) & X(eI®) => x(t — to) & X(e/@)eIoto

c(t) = cos@nf.t)rect (t - %) = % ((e/¥mfet 4 e=I2Mct)rect (t — %)
o % 271(6(0) —2nf.) +8(w+ anc)) * (sinc (%) e_ij)

< ”(5(0’ —2nf.) + 5(w + 27ch)) * (sinc (%) e_ij)

. (w—2mf\ _i2nfe (w4 2@f,\ i2nfc
<—>n[<smc< > )e 2 +smc< 5 )e 2 )]
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T [(sinc (% - nfc) e J™fe 4 sinc (% + nfc) ej”fC)]

So,cos(2nf, t)rect <t — %) or [(sinc (% - nfc) e J™e + sinc (% + nfc) ej”fC)] .

c) Code:

fc = 5;

w = -50:0.001:50;

Cijw = pi.*(sinc(w/ (2*pi)-fc).*exp(-j*pi*fc)+sinc(w/ (2*pi)+fc).*exp (j*pi*fc));
plot (w,abs (Ciw)) ;

xlabel ('\omega') ;ylabel (' |C (J\omega) |");

3.5

25} | [ |

|C(w)l

15 f I [ 1

d) 1° null to right of w, = 37.73 rad/s
1% null to left of w, = 25.09 rad/s

So, bandwidth = 12.64 rad/s .

Fourier transform of rectangular pulse is a sinc pulse with a null bandwidth of 27t rad/s.

Fourier transform of the modulated rectangular pulse is a sinc pulse centered at w. and
another sinc pulse centered at —w.. The null-to-null bandwidth is 4.

e) The magnitude of the Fourier transform of a two sided cosine consists of 2 Dirac deltas —
one at w., and the other at —w,.

Since each of the Dirac deltas has an extent of zero, the bandwidth is 0, i.e. the entire power
of the signal is contained in a single frequency.

From part (d), we see that the Fourier transform of c(t) has a non zero bandwidth. This is
because the multiplication with rect(t-0.5) limits the signal in the time domain. This results in
a “smearing” of the signal power across a band of frequencies centred around f,.

Epilogue: Here, we see that the time limited sinusoid is a pretty decent approximation to the
infinite duration sinusoid in the frequency domain. Increasing the sinusoid duration (i.e.

using something like cos(2rf.t)rect (i) ,k > 1) reduces the width of the main lobes, hence
improving the approximation accuracy in the frequency domain.
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Prologue: This question introduces the impulse train, a.k.a. the Dirac comb. The signal
introduced here is used for ideal sampling.
Solution:

a) The time-domain plot of an impulse train p(t) = Y.6(t — nTy) with spacing between
impulses of T; and the area under each impulse (Dirac delta) is 1:

RN
2 | | |
B R FTT I T o
-37, iz Lo ® leidl Madl, ¢

b) p(t) = X6(t — nTy)
Clearly, this is a pulse train with an impulse at every multiple of Ts. So, the period of this
signal is Ts.
c)p(t) = Ti(l + 2 cos(wst) + 2 cos(RQuwgt) + +++)
Approach #1: Use Fourier transform pairs 1 <->27 §(w) and cos(wst) <-> 7 d(w + w;) + 7 O(w
- ;) to obtain P(jw) = Ti(Zn + 218 (w + ws) + 2n8 (w — ws) + 2m8 (w + 2ws) +
216 (w — 2w5) + ++) = Ws g0 O (W — kwy)
Approach #2:
p(t) = Ti(l + eJ@st 4 gIOst 4 @205t | o205t 4 .Y

1 — .
)= — jkwgt
p(t) . E e

k=—o0

Using the Fourier transform pair e/®o! & 216 (w — w,), we get:
j 1 o oo
P(e/®) = 7 @rER w80 — kw)) = 05 (TF_w 6(@ — k).
d) As we can see from the formula above, the spacing between the impulses is ws %.

Epilogue: The Fourier transform of an impulse train in the time domain is an impulse train in
the Fourier domain. This transform pair forms the mathematical basis of sampling, and can
be used to derive the sampling & reconstruction theorems (Nyquist sampling theorem & sinc
interpolation) taught throughout the semester. Please see Signal Processing First Sec. 12-3.



