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EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Mini-Project	#1	on	FM	Synthesis	for	Musical	Instruments	

Mr.	Houshang	Salimian	&	Prof.	Brian	L.	Evans	

1.0 Introduction (6 points)	

Amplitude modulation (AM) and frequency modulation (FM) are commonly used in transmitting 
signals in radio frequencies, such AM radio and Bluetooth networks. Another interesting 
application of these modulation methods is to synthesize complex audio signals including notes 
that sound as if they had been played by a musical (acoustic) instrument. When using a sinusoid 
signal with a constant frequency in the audible frequency range, we can make an artificial 
sounding note, but it is missing a rich set of harmonics that are characteristic of an acoustic 
instrument. By adding frequencies to the note frequency, we might hear a more complicated 
sound signal, but it is not necessarily mimicking the sound of a musical instrument. 

Another approach to make a signal that is more complicated than a sinusoidal signal at a fixed 
frequency is to use a chirp signal.  In a chirp signal, the instantaneous frequency varies with time 
linearly so we will hear a sound whose principal frequency will gradually increase or decrease. 
Using frequency modulation, we can create signals that not only have a principal frequency 
varying with time but also have a rich harmonic structure. In this mini-project we will use the 
frequency modulation to make complex audio signals such as a bell sound. Also, we will check 
effect of different factors in frequency modulation on the audio signal that we synthesize.   

2.0 Overview (13 points) 

As mentioned in the Introduction, FM is a tool for creating interesting sounds. In this 
modulation, the angle of sinusoid varies nonlinearly with time, and instantaneous frequency 
covers the preferred range of frequency domain. Following is the equation that defines FM. 

y(t) = A(t) cos (2 π fc t + I(t) cos (2 π fm t + φm) + φc) 

In this project we will use fc, fm, I(t), and A(t) to observe their effects on a synthesized audio 
signal. Here, fc is the carrier frequency, which is a constant value and can be detected when we 
hear the sound. Also, fm is modulating frequency and determines rate of oscillations around fc. 
I(t) is modulation index envelope and we can see its effect in the instantaneous frequency.   
Finally, A(t) is the time-varying amplitude, which we will use to model how the amplitude of a 
note played by a musician would vary over time. 

The instantaneous frequency will be of particular interest in this project.  It is defined as the 
derivative of the angle of the cosine function with respect to time divided by 2 π: 

𝑓! 𝑡 =
1
2𝜋

𝑑
𝑑𝑡 2 π 𝑓!  𝑡 +  𝐼(𝑡) cos(2 π 𝑓! 𝑡 +  φ!)+  φ!  

𝑓! 𝑡 = 𝑓! − 𝐼 𝑡  𝑓! sin 2 π 𝑓! 𝑡 +  φ! +
𝑑
𝑑𝑡 𝐼 𝑡 cos(2 π 𝑓! 𝑡 +  φ!)  
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Here, fc is the constant value that the instantaneous frequency oscillates around. By increasing fm, 
rate of oscillation will increase and we can detect a sound with sharper variations. If we select 
I(t) = 0, the generated signal will be an audio signal with a single principal frequency, while by 
selecting a non-zero constant for I(t), the last term in fi(t) disappears. When I(t) is a constant or 
when I’(t) is relative small, the product of I(t) and fm determines the minimum and maximum 
instantaneous frequency.  

Using frequency modulation, we can have instantaneous frequencies that are not equal to fc or fm, 
and the sound generated will contain many frequencies in its spectra. For example, by selecting 
fm large enough we can make a wideband of instantaneous frequencies to synthesize a bell sound. 

3.0 Warm-Up (36 points) 

The previous sections discussed the use of frequency modulation to synthesize sound played by 
certain acoustic instruments.  Frequency modulation changes the frequency content according to 
a message (input) signal x(t) to produce the output y(t) = cos(2 π fc t + x(t)). 

 

 

The first case was that of a chirp signal that increases its principal instantaneous frequency 
linearly with time.  The message (input) signal is a quadratic function of time π fstep t2, which is 
further explored in Section 3.1.  In the second case, the message (input) signal is a sinusoid of 
the form B sin(2 π fm t), which is further explored in Section 3.2. 

3.1 Chirps and Aliasing 

A chirp signal has the form 

y(t) = cos( θ(t) )  where θ(t) = 2 π ( fc + ½ fstep t ) t = 2 π fc t + π fstep t2 

The principal frequency is fc when t = 0 and then changes over time at a rate of fstep in units of 
Hz/s. The principal frequency of a sinusoid at a given point in time is called the instantaneous 
frequency, and it is defined as dθ(t) / dt in units of rad/s.  Here, dθ(t) / dt = 2 π fc + 2 π fstep t = 2 
π (f0 + fstep t).  We can view the chirp signal as the output of a system y(t) = cos(2 π fc t + x(t)) 
where the input is x(t) = π fstep t2. 

For this section, we’ll be analyzing a chirp signal that 

1. Has a total time duration of 2.5s where the desired instantaneous frequency starts at 
13,000 Hz and ends at 200 Hz. 

2. Is sampled at a sampling rate of fs = 8000 Hz.  

This is a downsweeping chirp where 
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𝑓!"#$ =
𝑓!"# − 𝑓!"#$"
𝑇!"#$%&'(

=
200 Hz− 13000 Hz

2.5𝑠 = −5120 Hz! 

Converting the above equations into Matlab code: 
fs = 8000; 
Ts = 1/fs; 
t_max = 2.5; 
t = 0: Ts: t_max; 
 
f_start = 13000; 
f_end = 200; 
f_step = (f_end - f_start) / t_max; 
x = pi*f_step*(t.^2); 
y = cos(2*pi*f_start*t + x); 
f_instant = f_start + f_step*t;   %instantaneous frequency 
 
sound(y, fs) 
  
figure(1); 
spectrogram(y, hamming(256), 128, 256, fs, 'yaxis'); 
  
figure(2); 
plot(t, f_instant); 
xlabel('Time(s)'); 
ylabel('Instantaneous frequency (Hz)'); 
xlim([0 2.5]); 

  
According the equation for the chirp signal in continuous time, one should hear a sound with 
linearly decreasing frequency from 13000 Hz to 200 Hz. When listening to the signal, however, 
the principal frequency increases, then decreases, then increases, and finally decreases.  From the 
spectrogram, the principal frequency initially increases from 3000 Hz to 4000 Hz, then falls to 
zero, then rises to 4000 Hz and finally falls to 200 Hz.  

 
 
One is hearing via audio playback and seeing via the spectrogram plot the effects of sampling.  
The Sampling Theorem states that if a continuous-time signal is sampled at a rate fs > 2 fmax, 
where fmax is the maximum frequency in the continuous-time signal, then it is possible to 
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reconstruct the continuous-time signal from its samples.  Dividing both sides of the inequality by 
two yields fmax < ½ fs . When sampling, the maximum frequency of the continuous-time signal 
that can be captured is up to but not necessarily including ½ fs .  When including negative 
frequencies, frequencies in the interval [-½ fs, ½ fs] are captured when sampling. 

Let’s first take a look at what happens at continuous time frequency f0 with a sampling rate of fs: 

𝑥 𝑛 = cos 2𝜋𝑓!𝑡 |!!!!! = cos 2𝜋𝑓! 𝑛𝑇! = cos 2𝜋
𝑓!
𝑓!
𝑛  

The discrete-time frequency is  

𝜔 = 2𝜋
𝑓!
𝑓!

 

The continuous-time frequency of -½ fs becomes a discrete-time frequency of –π, and a 
continuous-time frequency of ½ fs becomes a discrete-time frequency of π.  This means that 
through sampling, the range of discrete-time frequencies is on the interval [-π, π]. 

Using f0 = 13000 Hz and fs = 8000 Hz,  

𝑥 𝑛 = cos 2𝜋
13000 Hz
8000 Hz 𝑛 = cos 2𝜋

13
8 𝑛 = cos 2𝜋

16
8 𝑛 − 2𝜋

3
8𝑛  

𝑥 𝑛 = cos 4𝜋𝑛 − 2𝜋
3
8𝑛 = cos −2𝜋

3
8𝑛 = cos 2𝜋

3
8𝑛  

Discrete-time frequency 2𝜋 !
!
 with fs = 8000 Hz means a continuous-time frequency of 3000 Hz. 

At the beginning of the continuous-time chirp signal when the principal continuous-time 
frequencies are decreasing from 13000 Hz to 12000 Hz, they actually appear to be increasing 
from 3000 Hz to 4000 Hz due to sampling at 8000 Hz.  Aliasing continues to occur until the 
principal continuous-time frequencies in the chirp signal fall below 4000 Hz, which is ½ fs . 

3.2 Wideband FM 
This section analyzes the wideband frequency modulated (FM) signals to be used in Section 4 to 
synthesize notes being played by certain acoustic instruments.  The signals have the form 

y(t) = cos(2 π f0 t + B sin(2 π fm t)) 

This is equivalent to sending an input signal x(t) = B sin(2 π fm t) into a system with an output of 
y(t) = cos(2 π f0 t + x(t)). 

By taking derivative of the angle of the cosine term in y(t) with respect to time, we can compute 
the instantaneous frequency 

𝑓! 𝑡 =
1
2𝜋

𝑑
𝑑𝑡 2 π 𝑓! 𝑡 +  𝐵 sin(2 π 𝑓! 𝑡) = 𝑓! + 𝐵 𝑓! cos(2 𝜋 𝑓! 𝑡) 

In parts (a)-(f) below, we will plot the spectrogram and instantaneous frequency of y(t). 

In parts (a)-(f), we will also use the spectrogram to visualize the harmonic structure of y(t). 
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We can unlock the harmonic structure in y(t) = cos(2 π f0 t + B sin(2 π fm t)) by first using a 
trigonometric identity, then using a Taylor series for cos(θ) and sin(θ) and finally determining 
the resulting harmonics.  We give those three steps next. 

Step #1: We’ll use the following trigonometric identity 

cos(α+β) = cos(α) cos(β) − sin(α) sin(β) 

to give 

y(t) = cos(2 π f0 t + B sin(2 π fm t)) = cos(2 π f0 t) cos(B sin(2 π fm t)) − sin(2 π f0 t) sin(B sin(2 π fm t)) 

The term cos(2 π f0 t) cos(B sin(2 π fm t)) is (sinusoidal) amplitude modulation that was analyzed in 
homework problem 2.2.  Multiplication by cos(2 π f0 t) will cause a shift in the frequency components 
of cos(B sin(2 π fm t)) by +f0 and -f0.   

We can perform a similar analysis of the term sin(2 π f0 t) sin(B sin(2 π fm t)).  This term is also a form of 
(sinusoidal) amplitude modulation that uses sin(2 π f0 t) instead of cos(2 π f0 t) that was analyzed in 
homework problem 2.2.  A similar effect happens.  Multiplying by sin(2 π f0 t) will cause a shift in the 
frequency components of sin(B sin(2 π fm t)) by +f0 and -f0 . 

Step #2:  The frequency components in cos(B sin(2 π fm t)) were explored in homework problem 
2.4(d).  The solution for homework problem 2.4(d) used the Taylor series expansion of cos(θ) which is 

cos 𝜃 = 1 −
1
2!
𝜃! +

1
4!
𝜃! −⋯ 

to obtain 

cos 𝐵 sin (2𝜋𝑓!𝑡) = 1 −
1
2!
𝐵!sin!(2𝜋𝑓!𝑡) +

1
4!
𝐵!sin!(2𝜋𝑓!𝑡) −⋯ 

where sin! 2𝜋𝑓!𝑡 = !
!
− !

!
cos (2𝜋(2𝑓!)𝑡)	which has frequency components of -2fm, 0, and 2 fm. We can view 

sin! 2𝜋𝑓!𝑡 = sin! 2𝜋𝑓!𝑡  sin! 2𝜋𝑓!𝑡  which gives frequency components of -4fm, -2fm, 0, 2 fm, and 4fm. If 
we include all of the higher-order terms, then we'll get all of the even harmonics of fm.	

In a similar way, we can expand sin(B sin(2 π fm t)) using the Taylor series  

sin 𝜃 = 𝜃 −
1
3!
𝜃! +

1
5!
𝜃! −⋯ 

to obtain 

sin 𝐵 sin(2𝜋𝑓!𝑡) = 𝐵 sin(2𝜋𝑓!𝑡) −
1
3!
𝐵!sin!(2𝜋𝑓!𝑡) +

1
5!
𝐵!sin!(2𝜋𝑓!𝑡) −⋯ 

If we keep all of the terms in the series, then we'll get all of the odd harmonics of fm. 

Step #3: By combining the results in steps 1 and 2, 

y(t) = cos(2 π f0 t + B sin(2 π fm t)) = cos(2 π f0 t) cos(B sin(2 π fm t)) − sin(2 π f0 t) sin(B sin(2 π fm t)) 

has frequency components of ..., f0 - 2 fm, f0 - fm, f0, f0 + fm, f0 + 2 fm, ...  That's what we see in the 
spectrograms below. 

Section 3.2(a) and (b):  Message frequency fm = 3 Hz and modulus B = 200 
Following is the Matlab code for this part.  
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fs = 8000; 
Ts = 1/fs; 
t_max = 1.35; 
t = 0 : Ts : t_max; 
f0 = 900; 
  
fm = 3; 
B = 200; 
  
y = cos(2*pi*f0*t + B*sin(2*pi*fm*t)); 
sound(y, fs) 
  
f_instant = f0 + B*fm*cos(2*pi*fm*t); 
  
figure(1); 
spectrogram(y, hamming(256), 128, 256, fs, 'yaxis'); 
  
figure(2); 
plot(t, f_instant); 
xlabel('Time(s)'); 
ylabel('Instantaneous frequency (Hz)'); 

 
A block size of 256 is used for the spectrogram. A block size of 128 and 512 also work. For 
block sizes larger than 512, I would need to increase the signal duration by the same factor; 
otherwise, the samples in the signal would only allow a few segments (blocks) of samples to be 
computed for the spectrogram. The sound matches with spectrogram. It oscillates around 900 Hz 
and its frequency goes up to 1500 Hz and decreases to 300 Hz. 

We can also use the spectrogram to visualize the harmonics present in the signal.  The signal 
duration of 1.35s corresponds to 10800 samples, i.e. 8000 samples/s times 1.35s.  From the 
previous mathematical analysis, the harmonics in the signal are spaced apart by fm = 3 Hz.  To 
obtain an accuracy of 1 Hz in the spectrogram, one would need to use a block size equal to the 
number of samples per second, which is 8000 in this case.  One would need to generate a much 
longer signal to have enough segments (blocks) of samples to see the harmonics. 

% Mini-Project #1 
% Problem 3.2(a) 
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% N = block size for spectrogram. 
% Frequency resolution is fs / N. 
% Using a larger block size means 
% that we'll need more samples for 
% the signal (i.e., increase tmax). 
% Ninc the factor to increase both 
% tmax and N for the analysis. 
fs = 8000; 
Ts = 1/fs; 
Ninc = 64; 
tmax = 1.35*Ninc; 
t = 0 : Ts : tmax; 
f0 = 900; 
fm = 3; 
B = 200; 
y = cos(2*pi*f0*t + B*sin(2*pi*fm*t)); 
N = 3*fs; 
spectrogram(y, hamming(N), N/8, N, fs, 'yaxis'); 
ylim( [0.890 0.910] ); 

Here is the spectrogram zoomed into the interval of frequencies between 890 Hz and 910 Hz 
which shows the spacing between harmonics of fm = 3 Hz: 

 

Section 3.2(c) and (d):  Message frequency fm = 30 Hz and modulus B = 20 

We repeat the above analysis in Sections 3.2(a) and (b) with fm = 30 Hz and B = 20. 
fs = 8000; 
Ts = 1/fs; 
t_max = 1.35; 
t = 0 : Ts : t_max; 
f0 = 900; 
  
fm = 30; 
B = 20; 
  
y = cos(2*pi*f0*t + B*sin(2*pi*fm*t)); 
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sound(y, fs) 
  
f_instant = f0 + B*fm*cos(2*pi*fm*t); 
  
figure(1); 
spectrogram(y, hamming(256), 128, 256, fs, 'yaxis'); 
  
figure(2); 
plot(t, f_instant); 
xlabel('Time(s)'); 
ylabel('Instantaneous frequency (Hz)'); 

The instantaneous frequency oscillates between 300 Hz and 1500 Hz. When played as sound, the 
principal frequency changes faster that in parts (a) and (b) due to fm of 30 Hz instead of 3 Hz. 

We can visualize the harmonics by generating a longer signal in the time domain: 
% Mini-Project #1 
% Problem 3.2(c) 
% N = block size for spectrogram. 
% Frequency resolution is fs / N. 
% Using a larger block size means 
% that we'll need more samples for 
% the signal (i.e., increase tmax). 
% Ninc the factor to increase both 
% tmax and N for the analysis. 
fs = 8000; 
Ts = 1/fs; 
Ninc = 32; 
tmax = 1.35*Ninc; 
t = 0 : Ts : tmax; 
f0 = 900; 
fm = 30; 
B = 20; 
y = cos(2*pi*f0*t + B*sin(2*pi*fm*t)); 
N = fs; 
spectrogram(y, hamming(N), N/8, N, fs, 'yaxis'); 
ylim( [0.8 1.0] ); 

Zooming into 800-1000 Hz, the spectrogram reveals a harmonic spacing of fm = 30 Hz: 
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Section 3.2(e) and (f):  Message frequency fm = 300 Hz and modulus B = 2 

We repeat the above analysis in Sections 3.2(a) and (b) with fm = 300 Hz and B = 2. 

Instantaneous frequency is plotted below over a duration of 1.35s (right) and zoomed in (left): 

 
We see harmonics shown by bright yellow lines at f0 = 900 Hz, f0 + fm = 1200 Hz, f0 - fm = 600 
Hz, etc. That is, we see harmonics of 300 Hz plus an offset of 900 Hz up to ½ fs : 
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4.0 FM Synthesis of Instrument Sounds (27 points) 

4.1 Generating the Bell Envelopes 

We will now customize the general FM synthesis equation to synthesize a bell sound: 

y(t) = A(t) cos (2 π fc t + I(t) cos (2 π fm t + φm) + φc) 

When a hammer strikes a bell, the bell will have a strong response in amplitude (volume) which 
will then decay will time.  Accordingly, the lab project models the time-varying amplitude as a 
decaying exponential, and in addition, also models I(t) in a similar way 

𝐴 𝑡 = 𝐴! 𝑒!
!
!  and  𝐼 𝑡 = 𝐼! 𝑒!

!
! 

where τ is the time constant.  The same time constant is used in both models. 

Function should be written as follows in Matlab. 
function yy = bellenv(tau, dur, fsamp) 
Tsamp = 1/fsamp; 
t = 0:Tsamp:dur; 
yy = exp(-t./tau); 
end 

This function is saved as bellenv.m and can be called by other m-files or in the command 
window. By inserting the input values, the envelope will be made to be used as A(t) or I(t). 

4.2 Parameters for the Bell 

Function should be written as follows in Matlab. 
function x = bell(ff, Io, tau, dur, fsamp) 
Tsamp = 1/fsamp; 
t = 0:Tsamp:dur; 
e1 = bellenv(tau, dur, fsamp); 
x = e1.*cos(2*pi*ff(1)*t+Io*e1.*cos(2*pi*ff(2)*t)); 
end 

 
This function is saved as bell.m and can be called in other m-files or in the command window. 

4.3 The Bell sound 

Here are several possible sets of parameters to use FM synthesis to generate a bell sound: 

Case fc (Hz) fm (Hz) I0 τ (sec) Tdur (sec) fs (Hz) 
1 110 220 10 2 6 11025 
2 220 440 5 2 6 11025 
3 110 220 10 12 3 11025 
4 110 220 10 0.3 3 11025 
5 250 350 5 2 5 11025 
6 250 350 3 1 5 11025 

For this section, cases 1 and 5 are chosen. 



Fall	2018	Mini-Project	1	Solution	|	The	University	Of	Texas	at	Austin	
	

Case 1: 
fc = 110; 
fm = 220; 
Io = 5; 
tau = 2; 
dur = 6; 
fs = 11025; 
x = bell ([fc, fm] , Io, tau, dur, fs); 
soundsc (x, fs) 
Ninc = 32; 
tmax = dur*Ninc; 
N = 1024; 
figure (1) 
spectrogram(x, hamming(N), N/8, N, fs, 'yaxis'); 
figure (2) 
It = Io*bellenv(tau, dur, fs); 
t = 0:1/fs: dur; 
fi = fc - fm*sin(2*pi*fm*t).*It-(1/tau)*cos(2*pi*fm*t).*It; 
plot (t, fi) 
xlabel ('T(s)') 
ylabel ('Instantaneous Frequency (Hz) #case 1 ') 
figure (3) 
plot(t,x) 
xlabel ('T(s)') 
ylabel ('Signal #case 1 ') 
figure (4) 
env = bellenv(tau, dur, fs); 
plot (t, env) 
xlabel ('T(s)') 
ylabel ('Envelope signal A(t) #case 1 ') 
figure (5) 
plot (t(32975:33175), x(32975:33175)) 
xlabel ('T(s)') 
ylabel ('x(t) #case 1 ') 

Part (a)  

The sound is made by multiple frequencies and it sounds like a bell. At the beginning it has more 
frequencies, but at the end, their power decreases except for fc. 

Part (b) 

The fundamental frequency is gcd(fc , fm). Like the approach used in Section 3, a Taylor series 
expansion can be used to derive the frequencies that are present in the spectrogram. This signal is 
comprised of the frequencies 

f = ±fc + k fm = ±110 Hz + k 220 Hz 
where k is integer. Therefore, the fundamental frequency is: 

f0 = gcd (fc, fm) = gcd (110 Hz, 220 Hz) = 110 Hz 
Part (c) 

At first, higher number of frequencies can be detected, but with respect to the modulation index 
(I(t)), most of the frequencies will die out over time and only fc coefficient remains constant. 
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Part d: 

In part (b), the fundamental frequency has been calculated. In the spectrogram, all mentioned 
positive frequencies of the form ±fc + k fm, are present. As the time passes, power of other 
frequencies decreases and only the fc power, remains unchanged. Because the amplitude values 
of I(t) decrease with respect to time, it shows its effect on the coefficient of other frequencies.  

 
Part (e) 

The changes in the signal shape match A(t). For negative and positive amplitudes, the envelope 
function is visible, and that is due to the fact that sinusoid is multiplied by envelope function.  
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Part (f) 

 
As shown in this figure, the signal has a high number of harmonics, and the fundamental 
frequency is 110 Hz. 

Case 5: 
fc = 250; 
fm = 350; 
Io = 5; 
tau = 2; 
dur = 5; 
fs = 11025; 
x = bell ([fc, fm] , Io, tau, dur, fs); 
soundsc (x, fs) 
Ninc = 32; 
tmax = dur*Ninc; 
N = 1024; 
figure (1) 
spectrogram(x, hamming(N), N/8, N, fs, 'yaxis'); 
figure (2) 
It = Io*bellenv(tau, dur, fs); 
t = 0:1/fs: dur; 
fi = fc - fm*sin(2*pi*fm*t).*It-(1/tau)*cos(2*pi*fm*t).*It; 
plot (t, fi) 
xlabel ('T(s)') 
ylabel ('Instantaneous Frequency (Hz) #case 4 ') 
figure (3) 
plot(t,x) 
xlabel ('T(s)') 
ylabel ('Signal #case 5 ') 
figure (4) 
env = bellenv(tau, dur, fs); 
plot (t, env) 
xlabel ('T(s)') 
ylabel ('Envelope signal A(t) #case 5 ') 
figure (5) 
plot (t(32975:33175), x(32975:33175)) 
xlabel ('T(s)') 
ylabel ('x(t) #case 5 ') 

 
Part (b) 

As mentiond in part (a), fundamental frequency is greatest common divisor of fc and fm: 
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 f0 = gcd (250 Hz, 350 Hz) = 50 Hz 

Part (c) 

 
Part (d) 

 
Here it can be seen that f0 is different from fc or fm. In case 1 this could not be detected, because 
of the fc: fm ratio, e.g. 1:2, and gcd(fc , fm) = fc . In this part, fc:fm ratio is 5:7 and gcd(fc , fm) is not 
equal to fc. Also it can be seen that, fc is the only frequency component that does not lose its 
power after 5 seconds.   

Part (e) 

As in Case #1, signal is placed between A(t) and –A(t), which decreases the signal amplitude 
accordingly. 
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Part (f) 

 

5.0 Conclusion (18 points) 

In this mini-project, we performed a deep dive into the analysis of frequency modulated (FM) 
signals and their application to sound synthesis. 

We first analyzed chirp signals. A chirp signal features a principal frequency that is increasing or 
decreasing linearly with time, and it is sometimes called a linear FM sweep. A chirp signal is 
used in ultrasound, radar, and active sonar as a way to gauge distances to objects in the 
environment; in audio systems to measure time and frequency responses; and in communication 
systems to measure distortion from transmitter to receiver. A chirp signal has a principal 
frequency with a narrow bandwidth. 

Next, we analyzed frequency modulation in which the instantaneous frequency varied in a 
sinusoidal pattern with respect to time. Such signals also have a rich set of harmonics at integer 
multiples of the sinusoidal pattern frequency, which are offset by the carrier frequency and its 
negative value.  Each harmonic has a narrow bandwidth, but span the entire frequency domain. 

Finally, we used a more general form of frequency modulation in which the amplitude of the 
sinusoidal signal varies with time and the amplitude of the instantaneous frequency also varies 
with time. This means that as the instantaneous frequency varies in a sinusoidal pattern with 
respect to time, its strength is also varying with time. We used decaying exponentials for both 
amplitude functions to mimic the decaying amplitude and harmonic components with time when 
playing a bell by striking it with a hammer. Eventually, the principal frequency of the bell is the 
last sound heard. This modeling approach can be used to synthesize sounds for many woodwind 
and brass instruments. 


