
Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Mini-Project	#2	on	Octave	Band	Filtering	for	Audio	Signals	

Mr.	Houshang	Salimian	and	Prof.	Brian	L.	Evans	

1- Introduction	(5	points)	
A	finite	impulse	response	(FIR)	filter	has	an	impulse	response	that	settles	to	

zero	 after	 a	 finite	 amount	 of	 time.	 In	 lectures,	 homeworks,	 and	 tuneups,	 we	 had	
discussed	 an	 L-point	 averaging	 filter,	 and	 observed	 its	 frequency	 response	 to	 be	
lowpass.	We	had	also	discussed	a	 first-order	difference	FIR	 filter,	 and	observed	 its	
frequency	response	as	a	highpass	filter.	Applications	might	require	lowpass,	highpass	
or	other	kinds	of	frequency	selectivity.	

When	 detecting	 notes	 being	 played	 from	 the	 fourth	 octave	 of	 a	 piano	
keyboard,	 a	 lowpass	 filter	 such	 as	 an	 L-point	 averaging	 filter	would	 not	 be	 useful.	
Instead,	 we	would	 require	 a	 bandpass	 filter	 to	 pass	 the	 frequencies	 in	 the	 fourth	
octave.	In	this	project,	we	will	analyze	and	design	bandpass	FIR	filters.	

2- Overview	(5	points)	
As	mentioned	in	the	Introduction,	an	application	of	FIR	filters	is	to	detect	the	

note	 frequencies	 in	 an	 audio	 signal,	 which	 may	 cover	 different	 ranges	 in	 the	
frequency	 domain.	 In	 this	 project,	 our	 goal	 is	 to	 generate	 a	 tool	 that	 receives	 an	
audio	signal	and	detects	its	octave	by	generating	a	scoring	vector.	This	tool	helps	us	
to	identify	the	range	of	input	signal’s	frequency	in	time	domain.	

A	piano	keyboard	is	made	up	of	88	keys,	which	spans	7	full	octaves	of	12	keys	
in	 each.	 The	 notes	 in	 one	 octave	 are	 at	 twice	 the	 frequency	 of	 the	 corresponding	
notes	in	next	lower	octave.	Also,	the	ratio	between	frequencies	of	successive	notes	
are	constant	and	equal	to	21/12.	By	using	this	property,	and	setting	fkey=49	=	440	Hz,	
the	frequency	of	each	note	can	be	calculated	by	the	following	equation	

f (n) = 2
n−49
12 ×440 	

where	n	is	the	key	number.	For	example	for	n	=	16,	f(16)	=	65.4064	Hz.	

3- Warmup	(20	points)	

3.1-	A	bandpass	FIR	filter	can	be	defined	in	different	ways.	One	approach	is	to	base	
the	design	on	a	rectangular	window	of	length	L	by	defining	the	filter	coefficients	as		

h[n]= 2
L
cos(⌢ωcn), 0 ≤ n < L 	

where	𝜔! 	 is	 the	 center	 frequency	 and	 L	 is	 the	 filter	 length.	 The	 rectangular	 pulse	
lasts	for	0≤n<L	with	amplitude	2/L.	By	selecting	L	=	25	and	𝜔! = 0.2𝜋,	the	following	
code	plots	the	impulse	response	and	frequency	response	of	this	bandpass	filter:	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

a) I
m
p
u
l
s
e
	
r
e
s
p
o
n
s
e
	
o
T
a)	The	impulse	response	is	shown	below:	

	
b) The	frequency	response	appears	below.		Magnitude	response	is	in	linear	units.	

	
c) The	bandpass	cutoff	points	are	selected	as	50%	of	the	peak	value	in	linear	units.	

Since	 this	 filter	 is	 normalized	 in	magnitude,	 its	 peak	 is	 equal	 to	one.	Using	 the	
data	cursor	in	the	MATLAB	plot	window,	the	bandwidth	can	be	estimated	as	

L = 25; % L is Length = 25
w_c = 0.2*pi; %center frequency
n = 0:(L-1);
h = 2/L*cos(w_c*n); %filter coefficients
n2 = [-3 -2 -1 n 25 26 27];
hnew = [0 0 0 h 0 0 0];
%-------part a-------------------------
figure
stem(n2,hnew) %plotting impulse response
ylim ([-0.15 0.15])
xlabel("n")
ylabel("h[n]")
%-------part b-------------------------
ww = -2*pi:(pi/10000):2*pi; %-- omega hat frequency axis
HH = freqz(h, 1, ww);
figure
subplot(2,1,1);
plot(ww, abs(HH))
xlim([-2*pi 2*pi])
ylabel('Magnitude')
subplot(2,1,2);
plot(ww, angle(HH))
xlim([-2*pi 2*pi])
ylabel('Phase')
xlabel("Normalized Radian Frequency")
	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

Magnitude(Passband1)	=	0.5	→𝜔!! =	0.4873	rad/sample	
Magnitude(Passband2)	=	0.5	→𝜔!! =	0.7885	rad/sample	
Bandwidth	=	𝜔!! − 𝜔!!	=	0.3012	rad/sample.	
	

3.2-	Placing	markers	on	the	plot	helps	to	find	values	on	the	plot	more	easily.	
		

	

	
	
	

	
	
	
	
	
	
	
	

	

𝜔	(rad)	 -0.5π	 -0.2π	 0	 0.2π	 0.5π	
Magnitude	 0.0899	 1	 0.08	 1	 0.0899	
Phase	(rad)	 1.676	 0	 0	 0	 -1.676	

The	 center	 frequency	 for	 this	 filter	 is	 0.2π.	 In	 the	 above	 table	 it	 can	 be	 seen	 that	
magnitude	 and	 phase	 for	 inputs	 with	𝜔=±0.2π	 remains	 unchanged.	 On	 the	 other	
side,	 for	 frequencies	outside	of	bandpass	 range,	 for	𝜔=0,	 ±0.5π,	 the	magnitude	of	
frequency	response	is	considerably	low.	
	
3.3-	In	MATLAB,	one	can	concatenate	vectors	x1	and	x2	into	vector	x	via	x	=	[x1	x2];	
	
3.4-	We	input	a	signal	consisting	of	one	principal	frequency	that	changes	every	200	
samples	 into	 the	 bandpass	 filter	 to	 see	 the	 effect	 of	 the	 filter.	 	 The	 principal	
frequencies	in	rad/sample	are	initially	0.5π,	then	0	and	finally	0.2π.	

L = 25;
w_c = 0.2*pi;
n = 0:(L-1);
h = 2/L*cos(w_c*n); %-- Filter Coefficients
ww = -pi:(pi/10000):pi; %-- omega hat frequency axis
HH = freqz(h, 1, ww);
plot(ww, abs(HH))
xlim([-pi pi])
ylabel('Magnitude')
xlabel('Normalized Radian Frequency')
hold on %hold on prevents overwriting on the previous plot
m = pi*[-0.5 -0.2 0 0.2 0.5];
H2 = freqz(h,1,m);
stem(m, abs(H2), 'r') %using stem for placing markers
hold off
	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

The	 filter’s	effect	on	the	 input	signal	can	be	seen	 in	 the	output.	Over	n=0:399,	 the	
output	signal	has	weakened,	whereas	the	filter	has	kept	the	magnitude	of	the	input	
for	𝜔=0.2π	constant.		
n	 0-199	(ω	=0.5π)	 200-399	(ω	=0)	 400-599	(ω	=0.2π)	
Input	Amplitude	 1	 2	 0.5	
Output	Amplitude	 0.0899	 0.16	 0.5	
Phase	shift	 -1.676	 0	 0	

Also,	the	transients	starting	at	n	=	0,	200,	400	are	shown	in	the	following	figure.	The	
first	 transient	happens	 from	n	 =	0	 to	23,	 its	duration	 is	equal	 to	L-1	=	24,	 and	 the	

n1 = 0:199;
xx = cos(0.5*pi*n1);

n3 = 400:599;
x_new = 0.5*cos(0.2*pi*n3);

n = 0:599;
xx = [xx 2*ones(1,200) x_new];

figure
stem(n,xx)
xlabel('n')
ylabel('x[n]')
ylim ([-1.25 2.25])

w_c = 0.2*pi;
L = 25;
m = 0:(L-1);
h = 2/L*cos(w_c*m);
yy = filter(h,1,xx);
figure
stem(n,yy)
xlabel('n')
ylabel('y[n]')

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

second	and	third	transients	are	from	n	=	200	to	223	and	n	=	400	to	423,	respectively.	
This	happens,	because	the	filter	is	faced	with	a	signal	with	different	frequency,	and	
the	output	signal	is	L-1	samples	longer	than	the	input	signal.	

	

	
3.5	Pole-Zero	Diagram	for	the	Bandpass	Filter	(not	required	but	useful)	

The	pole-zero	diagram	for	the	bandpass	filter	
with	L	=	25	and	𝜔=0.2π	can	provide	insight	into	
the	filter	design.		The	angles	(frequencies)	of	
the	zeros	indicate	the	stopband	of	the	filter.		
The	angles	of	the	two	gaps	in	the	pattern	of	the	
zeros	indicate	the	passbands	of	the	filter.	

L = 25;
w_c = 0.2*pi;
n = 0:(L-1);
h = 2/L*cos(w_c*n);
zplane(h);

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

4.	Bandpass	filter	design	(20	points)	

a)	 The	 previous	 section	 used	 a	 rectangular	 window	 as	 the	 basis	 for	 the	 bandpass	
filter.	For	frequencies	far	from	the	passband,	we	can	detect	peaks.	In	this	Section,	we	
will	base	the	design	on	a	Hamming	window	to	obtain	a	much	stronger	attenuation	in	
the	stopband.	The	leftmost	term	in	equation	below	is	a	Hamming	window:	

h[n]= 0.54−0.46 cos 2πn / L−1()()() cos ⌢ωc n− L−1() / 2()(), 0 ≤ n < L−1 	

In	the	following	plots,	the	range	is	selected	as	0≤𝜔≤π:	

close all
clear all
clc

L =41; %hamming window
w_c = 0.25*pi; %center frequency
n = 0:(L-1);
h = (0.54-0.46*cos(2*pi*n./(L-1))).*cos(w_c*(n-(L-1)/2)); %-- Filter
Coefficients with hamming window
ww = 0:(pi/10000):pi;
HH = freqz(h, 1, ww);

mm = pi*[0 0.1 0.25 0.4 0.5 0.75];
hm = freqz(h,1,mm);
M1= abs(hm);
Phi = angle(hm);

figure
subplot(2,1,1);
plot(ww, abs(HH))
hold on
stem(mm, M1)
xlim([0 pi])
ylabel('Magnitude')
hold off

subplot(2,1,2)
plot(ww, angle(HH))
hold on
stem(mm,Phi)
xlabel("Normalized Radian Frequency")
ylabel("Phase")
xlim([0 pi])
	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

The	 following	 values	 are	 calculated	 by	 the	 help	 of	 red	markers	 on	 the	 frequency	
response	(magnitude	and	phase).	

𝜔 0 0.1π 0.25π 0.4π 0.5π 0.75π
Magnitude 0.08 0.08 10.88 1.257 0.08 0.08
Phase π -π π -π -π -π

b) The	following	code	can	be	used	for	estimating	bandwidths.

L 21 41 81
Bandwidth 0.5699 0.2805 0.1414

Doubling	the	value	of	L	approximately	halves	the	bandwidth	(BW):	

1BW
L

∝ 	

L	=21	

L = 41

d = 0.5*max(abs(HH)); %set compare value = %50 of the peak value
F = find(abs(HH)>=d); %finding values in the bandpass
flength = length(F);
BW = ww(F(flength))-ww(F(1)); %calculating bandwidth
	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

L = 81

c)

x[n]= 2+ 2cos 0.1πn+ π
3

⎛

⎝
⎜

⎞

⎠
⎟+ cos 0.25πn−

π
3

⎛

⎝
⎜

⎞

⎠
⎟

According	to	the	table	in	Section	4.2.a	for	L=41	and	𝜔! = 0.25𝜋	

0 0() 0.08, ()j jH e H e π= ∠ = 	

0.1 0.1() 0.08, ()j jH e H eπ π π= ∠ = − 	

0.25 0.25() 10.88, ()j jH e H eπ π π= ∠ = 	

() ()[] 2 0.08 2 0.08 cos 0.1 10.88cos 0.25
3 3

y n n nπ π
π π π π⎛ ⎞ ⎛ ⎞= × + × + − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
	

2 2[] 0.16 0.16cos 0.1 10.88cos 0.25
3 3

y n n nπ π
π π⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
	

According	 to	 the	 frequency	 response	𝜔=0,	 0.1π	 terms	 are	 in	 the	 stopband,	 their	
value	 is	 less	 than	0.01	of	peak	value,	and	due	 to	 their	 low	amplitude	after	passing	
through	the	filter	we	cannot	detect	them	in	the	output	(Amplitude=0.16).	𝜔=0.25π	is	
the	center	frequency	and	is	located	in	the	passband,	so	it	is	the	only	term	that	shows	
in	the	output	with	Amplitude=10.88.	

d)	This	filter	passes	frequencies	around		𝜔=0.25π	with	BW=0.02805	and	rejects	
others	in	the	stopband.	For	the	values	that	are	not	present	in	passband	or	in	
stopband,	their	amplitude	is	low	but	not	enough	low	to	be	neglected.	

5-	Piano	Note	Decoding.	(40	points)	

Using	 the	 formula	 in	 Section	 2,	 we	 can	 calculate	 lower	 and	 upper	 frequencies	 for	 each	
octave.	The	center	frequency	(fc)	is	average	of	lower	(flow)	and	upper	(fup)	frequencies:	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

2
low up

c

f f
f

+
= 	

⌢
ω = 2π f

fs
, fs = 8000Hz

Octave	 Lower	Frequency	 Upper	Frequency	 Center	Frequency	 Band-width	
Hertz	 Rad/sam	 Hertz	 Rad/sam	 Hertz	 Rad/sam	 Hertz	 Rad/sam	

2	 65.40	 0.05137	 123.47	 0.09697	 94.43	 0.07417	 58.06	 0.04560	
3	 130.81	 0.10274	 246.94	 	 0.19394	 188.87	 0.14834	 116.12	 0.09120	
4	 261.62	 	 0.20548	 493.88	 	 0.38789	 377.75	 0.29668	 232.25	 0.18241	
5	 523.25	 0.41096	 987.76	 	 0.77579	 755.50	 0.59337	 464.51	 0.36482	
6	 1046.50	 0.82192	 1975.53	 1.55158	 1511.01	 1.18675	 929.03	 0.72965	

5.2- In	Section	4,	we	saw	that	for	a	41-point	filter,	the	magnitude	of	frequency	response	
reached	 to	 10.88.	 For	 making	 magnitude	 of	 frequency	 response	 normalized,	 a	
constant	value	should	be	multiplied	by	coefficients.

h[n]= β 0.54−0.46 cos 2πn / L−1()()() cos ⌢ωc n− L−1() / 2()(), 0 ≤ n < L−1 	

We	can	use	max()	in	MATLAB,	to	calculate	β.	In	the	following	code	normalized	value	
is	derived	by	this	method.	

fs = 8000;
ww = 0:(1/fs):pi; %-- omega hat frequency axis

%Octave 2
L2 = 251; %filter size
w_c2 = 2*pi*94.4386/fs; %center frequency
n2 = 0:(L2-1);
bb2 = (0.54-0.46*cos(2*pi*n2./(L2-1))).*cos(w_c2*(n2-(L2-1)/2)); %--
Filter Coefficients
HH2 = freqz(bb2, 1, ww);
betha = 1/max(abs(HH2));
bb2 = betha*bb2;
HH2 = freqz(bb2, 1, ww);
plot(ww, abs(HH2))

hold on

%Octave 3
L3 = 126;
w_c3 = 2*pi*188.8773/fs;
n3 = 0:(L3-1);
bb3 = (0.54-0.46*cos(2*pi*n3./(L3-1))).*cos(w_c3*(n3-(L3-1)/2));
HH3 = freqz(bb3, 1, ww);
betha = 1/max(abs(HH3));
bb3 = betha*bb3;
HH3 = freqz(bb3, 1, ww);
plot(ww, abs(HH3))

%Octave 4

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

L4 =63;
w_c4 = 2*pi*377.7545/fs;
n4 = 0:(L4-1);
bb4 = (0.54-0.46*cos(2*pi*n4./(L4-1))).*cos(w_c4*(n4-(L4-1)/2));
HH4 = freqz(bb4, 1, ww);
betha = 1/max(abs(HH4));
bb4 = betha*bb4;
HH4 = freqz(bb4, 1, ww);
plot(ww, abs(HH4))

%Octave 5
L5 = 32;
w_c5 = 2*pi*755.5088/fs;
n5 = 0:(L5-1);
bb5 = (0.54-0.46*cos(2*pi*n5./(L5-1))).*cos(w_c5*(n5-(L5-1)/2));
HH5 = freqz(bb5, 1, ww);
betha = 1/max(abs(HH5));
bb5 = betha*bb5;
HH5 = freqz(bb5, 1, ww);
plot(ww, abs(HH5))

%Octave 6
L6 =16;
w_c6 = 2*pi*1511.017/fs;
n6 = 0:(L6-1);
bb6 = (0.54-0.46*cos(2*pi*n6./(L6-1))).*cos(w_c6*(n6-(L6-1)/2)); %--
Filter Coefficients
HH6 = freqz(bb6, 1, ww);
betha = 1/max(abs(HH6));
bb6 = betha*bb6;
HH6 = freqz(bb6, 1, ww);
plot(ww, abs(HH6))

stem ([w_c2 w_c3 w_c4 w_c5 w_c6], ones(1,5), 'r')
xlabel("Normalized Radian Frequency")
ylabel("Magnitude")
xlim([0 pi])
zoom on

By	trial	and	error,	the	following	values	were	selected	for	the	bandpass	filter	for	each	
octave.	As	mentioned	in	last	section,	doubling	the	bandwidth	of	the	filter	will	mean	
that	L	will	be	halved.		The	issue	is	that	L	must	remain	an	integer.	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

Octave	 2	 3	 4	 5	 6	
L	 251	 126	 63	 32	 16	

	
5.3-	The	following	function	is	written	for	octaves	2	to	6.	By	calling	this	function	we	can	

get	coefficients	for	the	desired	octave.	For	 instance	by	writing	hh	=	Octavefilter(2),	
we	save	coefficients	of	FIR	filter	for	the	second	octave	in	hh.	

function bb = Octavefilter(o)
fs = 8000;
ww = 0:(1/fs):pi; %-- omega hat frequency axis

%Octave 2
if (o == 2)
L2 = 251;
w_c2 = 2*pi*94.4386/fs;
n2 = 0:(L2-1);
bb2 = (0.54-0.46*cos(2*pi*n2./(L2-1))).*cos(w_c2*(n2-(L2-1)/2)); %--
Filter Coefficients
HH2 = freqz(bb2, 1, ww);
betha = 1/max(abs(HH2));
bb = betha*bb2;
elseif (o==3)
%Octave 3
L3 = 126;
w_c3 = 2*pi*188.8773/fs;
n3 = 0:(L3-1);
bb3 = (0.54-0.46*cos(2*pi*n3./(L3-1))).*cos(w_c3*(n3-(L3-1)/2)); %--
Filter Coefficients
HH3 = freqz(bb3, 1, ww);
betha = 1/max(abs(HH3));
bb = betha*bb3;
elseif (o == 4)
%Octave 4
L4 =63;
w_c4 = 2*pi*377.7545/fs;
n4 = 0:(L4-1);
bb4 = (0.54-0.46*cos(2*pi*n4./(L4-1))).*cos(w_c4*(n4-(L4-1)/2)); %--
Filter Coefficients
HH4 = freqz(bb4, 1, ww);
betha = 1/max(abs(HH4));
bb = betha*bb4;
elseif (o == 5)
%Octave 5
L5 = 32;
w_c5 = 2*pi*755.5088/fs;
n5 = 0:(L5-1);
bb5 = (0.54-0.46*cos(2*pi*n5./(L5-1))).*cos(w_c5*(n5-(L5-1)/2)); %--
Filter Coefficients
HH5 = freqz(bb5, 1, ww);
betha = 1/max(abs(HH5));
bb = betha*bb5;
elseif(o==6)
%Octave 6
L6 =16;
w_c6 = 2*pi*1511.017/fs;
n6 = 0:(L6-1);
bb6 = (0.54-0.46*cos(2*pi*n6./(L6-1))).*cos(w_c6*(n6-(L6-1)/2)); %--
Filter Coefficients

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

HH6 = freqz(bb6, 1, ww);
betha = 1/max(abs(HH6));
bb = betha*bb6;
end
end

a)	

()()
()()
()() ()()

cos 2 220 , 0 0.25

() cos 2 880 , 0.3 0.55

cos 2 440 cos 2 1760 , 0.6 0.85

t t

x t t t

t t t

π

π

π π

⎧ ≤ <
⎪⎪

= ≤ <⎨
⎪

+ ≤ <⎪⎩

	

fs = 8000;
t = 0:1/fs:0.85;
%defining input
xx = cos(2*pi*220*t).*rectpuls(t-0.125,0.25)+cos(2*pi*880*t).*rectpuls(t-
0.425,0.25)+(cos(2*pi*440*t)+cos(2*pi*1760*t)).*rectpuls(t-0.725,0.25);
plot(t,xx)
ylim([-2 2])
xlabel('t(s)')
ylabel('x(t)')
%getting filter coefficients by calling Octavefilter.m
bb2 = Octavefilter(2);
bb3 = Octavefilter(3);
bb4 = Octavefilter(4);
bb5 = Octavefilter(5);
bb6 = Octavefilter(6);
%filter input(xx) via filter of each octave
y2 = filter (bb2,1,xx);
y3 = filter (bb3,1,xx);
y4 = filter (bb4,1,xx);
y5 = filter (bb5,1,xx);
y6 = filter (bb6,1,xx);

figure
subplot(5,1,1)
plot(t,y2)
xlabel('t(s)')
ylabel('y2')
subplot(5,1,2)
plot(t,y3)
xlabel('t(s)')
ylabel('y3')
subplot(5,1,3)
plot(t,y4)
xlabel('t(s)')
ylabel('y4')
subplot(5,1,4)
plot(t,y5)
xlabel('t(s)')
ylabel('y5')
subplot(5,1,5)
plot(t,y6)
xlabel('t(s)')
ylabel('y6')
	

	 	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

Input	signal:	

	

Output	signals	after	passing	through	the	filter.	

	
d)	The	frequency	response	for	all	present	frequencies	in	the	input	are	provided	in	the	
following	table.	

Freq.	
(Hz)	

Octave	2	 Octave	3	 Octave	4	 Octave	5	 Octave	6	
Mag.	 Phase	 Mag.	 Phase	 Mag.	 Phase	 Mag.	 Phase	 Mag.	 Phase.	

220	 0.0029	 π/8	 0.8324	 1.767	 0.2669	 0.9267	 0.0002	 -2.678	 0.0120	 1.8456	
440	 0.0038	 π/4	 0.0018	 π/8	 0.8340	 1.8535	 0.2625	 0.9267	 0.0099	 -2.591	
880	 0.0032	 π/2	 0.0028	 π/4	 0.0013	 0.5654	 0.8306	 1.8535	 0.2835	 1.0995	
1760	 0.0011	 -π	 0.0028	 π/2	 0.0029	 1.1309	 0.0036	 -2.576	 0.8390	 2.1991	

Based	on	 the	above	 table,	 the	output	plot	 is	 correct.	For	 instance,	all	 the	 terms	 in	
input	 are	 in	 stopband	 of	 octave	 2,	 consequently	 it	 has	 blocked	 the	 input	 and	 the	
magnitude	is	almost	zero.	On	the	other	hand,	in	octave	3,	we	can	see	it	will	pass	the	
first	part	of	input	because	its	frequency	is	in	its	bandpass.	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

For	 octave	 4,	 one	 term	 in	 part	 3	 of	 input	 (f	 =	 440	 Hz)	 has	 passed	with	 almost	 the	 same	
amplitude	of	input	signal.	Part	2	of	input	is	blocked	because	its	frequency	(f	=	880	Hz)	is	in	
the	stopband,	and	part	1	is	present	with	a	lower	amplitude,	because	f	=	220	Hz	is	neither	in	
bandpass	nor	in	stopband	of	octave	4.	

e)	The	longest	period	of	transient	is	for	octave	2,	and	the	shortest	transient	happens	in	filter	
of	 octave	 6.	 This	 relates	 to	 the	 size	 of	 filter	 (L).	 The	 following	 formula	 shows	 relation	
between	transient	and	filter’s	size.	

1 1
8000s

L Ltransient
f
− −

= = 	

Octave	number	 2	 3	 4	 5	 6	
Transient	(s)	 0.03125	 0.015625	 0.00775	 0.003875	 0.001875	
	

5.4- The MATLAB code for scoring function:

function score = octavescore(xx,hh,fs)

L = length(hh); % returns value of L for hh filter

y = conv (hh,xx); %y is out put after passing through the filter
ystart = ceil((L-1)/2); %computing the delay, ceil converts it to an
integer value(closest upper value)
yend = length(y)-(L-ystart);
ynew = y(ystart:yend); %y_delay is the output signal after clearing first
(L-1)/2 cells of y

ol=length(ynew); %output length

k = fs*0.050; % k shows number of samples in each 50 ms
sections_number = ceil(ol/k); % length of score vector
V = zeros(1,sections_number);
score = zeros(1,sections_number);
for m = 1:sections_number
 Q = zeros(1,k);
 r = (m-1)*k;
 if((r+k)<ol)
 Q = abs(ynew(r+1:r+k));
 else
 Q(r+1:ol) = abs(ynew(r+1:ol));
 end
 V(1,m) = max(Q);
 if (V(1,m)>=0.5)
 score(1,m) = 1;
 else
 score(1,m) = 0;
 end
end

In	the	following	code,	labtest.mat	is	read	by	MATLAB	and	has	been	saved	in	xx	as	the	
input	 to	 the	 system.	 Finally,	 going	 through	 filter	 and	 scoring	 function,	 the	 score	
vector	(W)	is	calculated	for	each	vector.	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

load labtest.mat
filename = 'labtest.flac';
audiowrite(filename,xx,fs)
clear xx fs
[xx, fs]=audioread('labtest.flac');
for i=2:6
h = Octavefilter(i);
W(i-1,:) = octavescore(xx,h,fs);
end

In	matrix	W,	we	can	find	the	score	value	for	octave	2	to	6,	in	rows	1-6	respectively.	
The	vector	has	divided	audio	playing	time	(3.77	s)	into	76	sections,	i.e.	each	section	
covers	50ms	of	time	domain.		

In	following	table,	score	value	for	each	octaves	are	shown	in	columns.		

Octave	
2	

Octave	
3	

Octave	
4	

Octave	
5	

Octave	
6	

0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 1	 1	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 1	 1	 0	
0	 0	 1	 0	 0	
0	 0	 1	 1	 0	
0	 0	 1	 1	 0	
0	 0	 1	 1	 0	
0	 0	 1	 1	 1	
0	 0	 0	 1	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 1	 1	 1	
0	 0	 1	 0	 0	
0	 0	 1	 0	 0	
0	 0	 1	 0	 0	
1	 1	 1	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

1	 0	 0	 0	 0	
1	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 1	 0	 0	 1	
0	 1	 0	 0	 1	
0	 1	 0	 0	 0	
0	 1	 0	 0	 0	
0	 1	 0	 0	 0	
0	 1	 0	 0	 0	
0	 1	 0	 0	 0	
1	 1	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
1	 0	 0	 0	 0	
0	 0	 0	 1	 1	
0	 0	 0	 1	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 0	 1	
0	 0	 0	 1	 1	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 1	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 0	 0	 1	 0	
0	 1	 0	 1	 0	
0	 1	 0	 0	 0	
0	 1	 0	 0	 0	
0	 0	 0	 0	 0	
0	 0	 0	 1	 1	
0	 0	 0	 0	 0	
0	 0	 0	 0	 0	
0	 0	 0	 0	 0	
0	 0	 0	 0	 0	
0	 0	 0	 1	 1	

Fall	2018	Mini-Project	2	Solution	|	The	University	Of	Texas	at	Austin	
	

6- Conclusion (10 points)

In this mini-project we studied FIR bandpass filter in depth, and developed a tool to
identify the range of frequencies among piano notes.

Based on a rectangular window, we first designed a bandpass filter that is based on
two parameters: center frequency and length. By plotting the frequency response, we saw
that the filter has the highest magnitude at the center frequency— the magnitude decreases as
the frequency increases (or decreases) away from the center frequency. We tested the filter by
passing an input signal with different frequency components and validated that the filter
reduces frequency components in the stopband and passes frequency components in the
passband. We also discussed transients, which happen when a frequency in the input signal
changes abruptly.

Next, we tried out a different bandpass filter design based on the Hamming window.
When using a rectangular window, the filter could not sufficiently attenuate the frequencies
in the stopband which could lead to false positives when detecting piano note octaves.
Comparing these two windows, we observed that the Hamming window gives a bandpass
filter with much stronger attenuation in the stopband (40 dB vs. 13.5 db). In this part, we also
analyzed the effect of window size on the bandpass filter frequency response. For the same
center frequency, doubling the window size halved the passband.

Finally, we designed an audio signal analyzer that can detect the range of frequencies
that the frequency components of an input signal belong. This analyzer is composed of five
parallel bandpass filters that pass octaves 2 to 6, respectively, of piano notes. Then, we
generated a scoring function that uses the output of these filters and shows that in a certain
time duration, the audio signal is consisted by which octave notes. This analyzer could be
extended to detect other frequency ranges.

