Homework \#10

Laplace Transforms

Assigned on Friday, November 30, 2018
Due on Monday, December 10, 2018, by 5:00 pm via Canvas submission
Late homework is subject to a penalty of two points per minute late.
Reading: McClellan, Schafer \& Yoder, Signal Processing First, 2003, Chapter 16: https://utexas.instructure.com/files/47383586/download?download frd=1

Companion Web site with demos and other supplemental information: http://dspfirst.gatech.edu/ Web site contains solutions to selected homework problems from DSP First.

The e-mail address for Mr. Houshang Salimian (TA) is salimian.houshang@gmail.com. Office hours for Mr. Salimian and Prof. Evans follow. Prof. is holding additional office hours on WF 9:00-10:00am. His Wednesday afternoon office hours have changed to 1:00-2:00pm.

Time Slot	Monday	Tuesday	Wednesday	Thursday	Friday
$9: 00 \mathrm{am}$			Evans (EER 6.882)		Evans (EER 6.882)
$10: 00 \mathrm{am}$		Salimian (EER 0.814 Table \#4)			
$11: 00 \mathrm{am}$		Salimian (EER 0.814 Table \#4)		Salimian (EER 0.814A)	Salimian (EER 0.814D)
$\mathbf{1 2 : 0 0 ~ p m ~}$		Evans (EER 1.516)		Salimian (EER 0.814A)	Salimian (EER 0.814D)
$\mathbf{1 2 : 3 0 ~ p m ~}$		Evans (EER 1.516)	Evans (EER 6.882)	Evans (EER 1.516)	
$1: 00 \mathrm{pm}$		Evans (EER 6.882)	Evans (EER 0.814D)		
$2: 00 \mathrm{pm}$		Evans (EER 6.882)	Salimian (EER 1.810)	Evans (EER 6.882)	
$\mathbf{3 : 0 0 ~ p m ~}$		Salimian (EER 1.810)	Salimian		
$\mathbf{3 : 3 0 ~ p m ~}$		Salimian (EER 1.810)			
$\mathbf{4 : 0 0 ~ p m ~}$					
$\mathbf{4 : 3 0 ~ p m ~}$					

Prof. Evans' coffee hours this week will be 12:00-2:00pm on Friday in the EERC café.
EE 313 tutoring is available on Sundays through Thursdays from 7:00pm to 10:00pm in EER 0.814:
http://www.ece.utexas.edu/undergraduate/tutoring

1. Laplace Transform Using Transforms and Properties. 24 points.

The time-shift property states that if $X(s)$ is the bilateral Laplace transform of $x(t)$, then

$$
x\left(t-t_{d}\right) \leftrightarrow e^{-s t_{d}} X(s)
$$

Use this property to find the bilateral Laplace transforms of the following signals, including their regions of convergence:
(a) $x(t)=u(t)-u(t-1)$
(b) $x(t)=3 e^{-3 t} u(t-2)$
(c) $x(t)=3 e^{-3(t-2)} u(t-2)$
(d) $x(t)=5 \sin (\pi(t-1)) u(t-1)$

Inspired by Signal Processing First, problem P-16.2, Chapter 16, page 59.

2. Transfer Functions in the Laplace Domain. 18 points.

Plot each signal in the time domain for $-1<t<1$, compute the Laplace transform including the region of convergence, and sketch the pole-zero plot and region of convergence for the following signals:
(a) $x(t)=\cos (20 \pi t) u(t)$
(b) $x(t)=e^{-8 t} u(t)$
(c) $x(t)=\left(1-e^{-8 t}\right) u(t)$

3. Transfer Function in the Laplace Domain. 34 points.

A continuous-time system with input $x(t)$ and output $y(t)$ is described by the following linear constant coefficient differential equation for $t>0$:

$$
\frac{d}{d t} y(t)+2 y(t)=\frac{d}{d t} x(t)
$$

Initial conditions are set to zero, i.e. $y\left(0^{-}\right)=0$ and $x\left(0^{-}\right)=0$, so the system will have linearity and timeinvariant properties. (Notice the two different uses of "linear". In the case of linear constant different equation, "linear" refers to "affine" which is a line that does not necessarily go through the origin.)
(a) What is the transfer function $H(s)$ of the system in the Laplace domain including the region of convergence?
(b) What is the impulse response $h(t)$ of the system?
(c) Find the frequency response $H(j \omega)$ of the system from the transfer function. Why is the substitution $s=j \omega$ valid?
(d) From part (c), plot the magnitude response. What is the frequency selectivity- lowpass, highpass, bandpass, bandstop, allpass or notch?
(e) For $x(t)=u(t)$, find $X(s)$ and $Y(s)$.
(f) From part (e), find $y(t)$ by taking the inverse Laplace transform of $Y(s)$.

Note: This problem is a variation on homework problem 9.3 from fall 2017.

4. Another Transfer Function in the Laplace Domain. 24 points.

Signal Processing First, problem P-16.10, page 61.

As stated on the course descriptor, "Discussion of homework questions is encouraged. Please be sure to submit your own independent homework solution."

NOTE: In your solutions, please put all work for problem 1 together, then all work for problem 2 together, etc. Please see additional homework guidelines on the homework page.

Please read the homework guidelines at
http://users.ece.utexas.edu/~bevans/courses/signals/homework/index.html

