EE 313 Linear Signals \& Systems (Fall 2018)

Solution Set for Homework \#10 on Laplace Transforms

By: Mr. Houshang Salimian \& Prof. Brian L. Evans

Problem 1.

a) $\quad x(t)=u(t)-u(t-1)$

From lecture $L\{u(t)\}=\frac{1}{S}$ and $L\left\{x\left(t-t_{d}\right)\right\}=e^{-s t_{d}} X(s)$
$X(s)=\frac{1}{s}-\frac{e^{-s}}{s}=\frac{1-e^{-s}}{s}$, for all s
This is a finite-amplitude finite-duration signal, and hence the region of convergence is the entire s plane.
At first glance, it would seem that the region of convergence should have been $\operatorname{Re}\{s\}>0$ because the signal is causal and the denominator goes to zero when s goes to zero. However, when s goes to zero, the numerator also goes to zero. We can use L'Hôpital's rule by letting s go to zero. The derivative of the numerator with respect to s is $\exp (-s)$ and the derivative of the denominator with respect to s is 1 . The limit of $X(s)$ as s goes to zero is 1 .
b) $\quad x(t)=3 e^{-3 t} u(t-2)$

From $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a}$ and region of convergence is $\operatorname{Re}\{s\}>-\operatorname{Re}\{a\}$.
$x(t)=3 e^{-3 t} u(t-2)=3 e^{-3(t-2+2)} u(t-2)=3 e^{-6} e^{-3(t-2)} u(t-2)$
$X(s)=\frac{3 e^{-6} e^{-2 s}}{s+3}=\frac{3 e^{-6}}{s+3} e^{-2 s}$
And the region of convergence is $\operatorname{Re}\{s\}>-3$.
Writing the $\exp (-2 s)$ separately from the rest of the expression can help highlight the term, which corresponds in the time domain to a delay by 2 seconds.
c) $\quad x(t)=3 e^{-3(t-2)} u(t-2)$

This part is similar to part b .
$X(s)=\frac{3 e^{-2 s}}{s+3}=\frac{3}{s+3} e^{-2 s}$
The region of convergence is $\operatorname{Re}\{s\}>-3$.
d) $x(t)=5 \sin (\pi(t-1)) u(t-1)$

From $L\left\{\sin \left(\omega_{0} t\right) u(t)\right\}=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$ and region of convergence is $\operatorname{Re}\{s\}>0$.
$X(s)=\frac{5 e^{-s} \pi}{s^{2}+\pi^{2}}=\frac{5 \pi}{s^{2}+\pi^{2}} e^{-s}$
And the region of convergence is $\operatorname{Re}\{s\}>0$.

Problem 2.

a)

$$
x(t)=\cos (20 \pi t) u(t)
$$

From $L\left\{\cos \left(\omega_{0} t\right) u(t)\right\}=\frac{s}{s^{2}+\omega_{0}^{2}}$ for $\operatorname{Re}\{s\}>0$.
$X(s)=\frac{s}{s^{2}+(20 \pi)^{2}}=\frac{s}{s^{2}+400 \pi^{2}}$
The region of convergence is $\operatorname{Re}\{s\}>0$.

MATLAB code

```
t = -1:1/10000:1;
unitstep = zeros(size(t));
unitstep (t>= 0) = 1;
x = cos(20*pi*t).*unitstep;
plot(t,x)
xlabel('Time(s)')
ylabel('x')
```


Zeros are roots of nominator and poles are roots of denominator.
zero: $s=0, \quad$ pole: $s^{2}+(20 \pi)^{2}=0 \Rightarrow s_{1,2}= \pm j 20 \pi$
In the figure legend, Res means $\operatorname{Re}\{s\}$.

b)

$$
x(t)=e^{-8 t} u(t)
$$

From $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a}$ for $\operatorname{Re}\{s\}>-\operatorname{Re}\{a\}$.
$X(s)=\frac{1}{s+8}$
The region of convergence is $\operatorname{Re}\{s\}>-8$.

```
t = -1:1/10000:1;
unitstep = zeros(size(t));
unitstep (t>= 0) = 1;
x = exp(-8*t).*unitstep;
plot(t,x)
xlabel('Time(s)')
ylabel('x')
```


pole: $s+8=0 \Rightarrow s=-8$
In the figure legend, Res means $\operatorname{Re}\{s\}$.

c)

$$
x(t)=\left(1-e^{-8 t}\right) u(t)=u(t)-e^{-8 t} u(t)
$$

$$
\text { From } L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a} \text { for } \operatorname{Re}\{s\}>-\operatorname{Re}\{a\} .
$$

$$
X(s)=\frac{1}{s}-\frac{1}{s+8}=\frac{8}{s(s+8)}
$$

The region of convergence is $\operatorname{Re}\{s\}>0$.

```
t = -1:1/10000:1;
unitstep = zeros(size(t));
unitstep (t>= 0) = 1;
x = (1-exp(-8*t)).*unitstep;
plot(t,x)
xlabel('Time(s)')
ylabel('x')
```


poles: $s(s+8)=0 \Rightarrow s_{1}=0, s_{2}=-8$ In the figure legend, Res means $\operatorname{Re}\{s\}$.

Problem 3.

Using the property: $L\left\{\frac{d}{d t} x(t)\right\}=s L\{x(t)\}$ for zero initial conditions, we get:
a) $s Y(s)+2 Y(s)=s X(s)=>Y(s)(s+2)=s X(s)=>H(s)=\frac{Y(s)}{X(s)}=\frac{s}{s+2}$

Because the system is causal, the region of convergence is $\operatorname{Re}\{s\}>-2$.
b) Using the Laplace transform pair $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a}$ for $\operatorname{Re}\{s\}>-\operatorname{Re}\{a\}, L(\delta(t))=1$ for all s, we obtain

$$
\begin{aligned}
& H(s)=\frac{s}{s+2}=\frac{s+2-2}{s+2}=1-\frac{2}{s+2} \\
& h(t)=\delta(t)-2 e^{-2 t} u(t)
\end{aligned}
$$

c) $H(j \omega)=\frac{j \omega}{j \omega+2}$ by substituting $s=j \omega$ into $H(s)$ above. This substitution is valid because the imaginary axis lies within the region of convergence of $\operatorname{Re}\{s\}>-2$.
d)

```
w = -10:1/10000:10;
H= j**W./(j*WW+2);
Hmag=abs(H) ;
Hphase=angle(H);
plot(w,Hmag)
title('Magnitude Response');
figure
plot(w,Hphase)
title('Phase Response');
```


According to magnitude response, the filter notches out zero frequency. Hence, it is a notch filter. It could also be called a highpass filter, but a DC notch filter would be more descriptive and a better answer.

Here's the plot of the magnitude and phase using the freqs command in Matlab, which will plot the frequency responses on a \log scale in frequency. The magnitude will also be on a log scale.

```
freqs ( [1 0], [1 2] );
```


We see a highpass response over the frequencies plotted.
Please note that freqs ([1], [12 2]) would mean $\frac{1}{s+2}$ for the transfer function instead of $\frac{s}{s+2}$.
e) $x(t)=u(t)=>X(s)=\int_{-\infty}^{\infty} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t=\frac{1}{s}$ for $\operatorname{Re}\{s\}>0$. We could have also obtained the transform by using $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a}$ and substituting $a=0$.
$Y(s)=H(s) X(s)=\frac{1}{s+2}$
f)

Using the Laplace transform pair $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a^{\prime}}$, for we get $y(t)=e^{-2 t} u(t)$

Problem 4.

a) Using the Laplace transform pair $L\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a}$, we get

$$
h(t)=e^{-2 t} u(t)
$$

b)
$X(s)=L\left\{7 e^{-2 t} u(t)\right\}=\frac{7}{s+2}$, for $\operatorname{Re}\{s\}>-2$
$Y(s)=H(s) X(s)=\frac{7}{(s+2)^{2}}$, for $\operatorname{Re}\{s\}>-2$
From $L\left\{t^{r} e^{-a t} u(t)\right\}=\frac{r!}{(a+s)^{r+1}}$, for $\operatorname{Re}\{s\}>-\operatorname{Re}\{a\}$
$y(t)=7 t e^{-2 t} u(t)$
c) Using convolution:
$y(t)=h(t) * h(t)=\int_{-\infty}^{\infty} h(\tau) h(t-\tau) d \tau=\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau$
$=\int_{-\infty}^{t} e^{-2 \tau} u(\tau) e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{-\infty}^{t} u(\tau) d \tau=\left\{\begin{array}{l}0, \quad t<0 \\ e^{-2 t} \int_{0}^{t} 1 d \tau=t e^{-2 t}, \quad t \geq 0\end{array}\right.$
$h(t) * h(t)=t e^{-2 t} u(t)$
For a discrete-time version of this problem, please see Handout F Convolution of Exponential Sequences at
http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix\ F\ Convolut ion\%20Exp\%20Sequences.pdf
d)

From $L\left\{t^{r} e^{-a t} u(t)\right\}=\frac{r!}{(a+s)^{r+1}}$, for $\operatorname{Re}\{s\}>-\operatorname{Re}\{a\}$
$y(t)=h(t)^{*} h(t) \rightarrow Y(s)=L\left\{t e^{-2 t} u(t)\right\}=\frac{1}{(s+2)^{2}}$, for $\operatorname{Re}\{s\}>-2$
Poles are the roots of the denominator:
poles: $(s+2)^{2}=0 \Rightarrow s_{1,2}=-2$

Thus, $Y(s)$ has a double pole at $s=-2$.

