
EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Homework	#2	on	Fourier	Series	

By:	Mr.	Houshang	Salimian	and	Prof.	Brian	L.	Evans	

1. Prologue:	This	problem	asks	to	generate	the	signal	in	the	time	domain	by	using	the	signal’s	
spectrum.		The	spectral	and	time	representations	give	complementary	views	into	the	signal.			

Solution:	The	spectrum	indicates	that	the	signal	has	frequency	components	of	-175	Hz,	-50	
Hz,	 0	 Hz,	 50	 Hz	 and	 175	 Hz.	 	 The	 strongest	 frequency	 component	 is	 at	 0	 Hz	 because	 its	
magnitude	 (11)	 is	 the	 largest.	 	 The	 second	 strongest	 frequency	 components	 are	 at	 -50	Hz	
and	50	Hz.		The	weakest	frequency	components	are	at	-175	Hz	and	175	Hz.			

Part	(a):	We	can	directly	read	off	the	spectral	components	to	create	the	time	domain	
representation	of	the	signal	
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Part	(b):		The	signal	x(t)	is	periodic	with	period	T,	if	x(t	+	T)	=	x(t)	for	all	values	of	t:		
x(t)	=	11	+	14	cos(2	π	(50)	t	-	π/3)	+	8	cos(2	π	(175)	t	–	π/2)	
x(t+T)	=	11	+	14	cos(2	π	(50)	(t	+	T)	-	π/3)	+	8	cos(2	π	(175)	(t	+	T)	–	π/2	
											=	11	+	14	cos	(2	π	(50)	t	+	2	π	(50)	T	-	π/3)	+	8	cos	(2	π	(175)	t	+	2	π	(175)	T	–	π/2)	

In	order	for	x(t	+	T)	=	x(t)	for	all	values	of	t,	we	can	equate	the	first	terms	in	x(t	+	T)	and	x(t),	
equate	the	second	terms	in	x(t	+	T)	and	x(t),	and	equate	the	third	terms	in	x(t	+	T)	and	x(t),	
and	find	values	of	T	that	work	for	all	three	terms.	

The	 first	 terms	 are	 already	 equal	 to	 each	 other	 (11).	 	 The	 second	 terms	 are	 equal	 when	
2π(50)T	=	2πm	where	m	 is	an	 integer,	 i.e.	when	T	 is	1/50,	2/50,	3/50,	4/50,	etc.	 	The	third	
terms	are	equal	when	2π(175)T	=	2πk	where	k	 is	 an	 integer;	 i.e.,	when	T	 is	 1/175,	 2/175,	
3/175,	4/175,	etc.		The	common	values	for	the	period	T	in	seconds	among	all	three	terms	are	
1/25,	 2/25,	 3/25,	 4/25,	 etc.,	which	means	 that	 the	 fundamental	 period	 is	 0.04	 s,	 and	 the	
fundamental	frequency	is	25	Hz.	

Alternately,	the	fundamental	frequency	can	be	found	from	the	spectrum	as	the	greatest	
common	divisor	(gcd)	of	(50	,	175):		f0	=	gcd	(50	,	175)	=	25	Hz	and	T0	=	1/f0	=	1/25	=	0.04	s	

Part	(c):		cos(ϴ)	=	Re{ejϴ}.		From	the	inverse	Euler’s	formula,	cos(ϴ)	=	½	ejϴ	+	½	e-jϴ.		
Therefore	sinusoids	should	be	shown	by	both	frequencies.	

Epilog:	Sometimes,	it’s	easier	to	answer	a	question	in	the	time	domain,	and	sometimes,	
using	the	frequency	domain	is	easier.	In	part	(b),	it	was	much	easier	to	find	the	fundamental	
frequency	from	the	spectrum	than	the	time-domain	representation.		And,	sometimes,	a	
time-frequency	representation	is	the	right	tool	for	the	problem,	as	we’ll	see	in	problem	3.	
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2. Prologue:		Amplitude	modulation	is	a	powerful	idea.		It	is	used	to	transmit	a	message	by	
shifting	the	frequency	content	in	the	message	to	a	higher	frequency	to	make	it	easier	to	
transmit.		Consider	the	transmission	of	an	audio	signal	30	miles	(48	km),	e.g.	from	Austin,	TX,	
to	San	Marcos,	TX.		Cranking	up	the	volume	on	the	audio	signal	using	the	largest	bank	of	
speakers	possible	in	Austin	would	not	make	the	audio	signal	audible	in	San	Marcos.		
However,	we	could	use	amplitude	modulation	to	shift	the	audio	signal	by	1300	kHz	and	
transmit	it	as	an	electromagnetic	wave	over	the	air,	which	would	be	using	an	AM	Radio	
Station	at	1300	kHz.		A	receiver	in	San	Marcos	would	receive	the	AM	transmission	and	shift	
the	frequencies	from	1300	kHz	to	0	Hz,	which	is	known	as	demodulation.		Long-range	
propagation	is	possible	in	AM	radio	bands.		The	idea	of	amplitude	modulation	is	used	in	light	
communications	over	optical	fiber	(a.k.a.	optical	communications)	as	well	as	in	cellular	and	
Wi-Fi	communications.		Amplitude	modulation	can	also	create	audio	effects.		This	particular	
problem	looks	at	amplitude	modulation	used	in	AM	radio,	which	adds	a	large	DC	offset	to	
the	message	signal	before	the	frequency	content	is	shifted.	

Part	(a):		The	message	signal	is	12	+	7	sin(π	t	–	pi/3)	which	has	frequency	components	of	-0.5	
Hz,	0	and	0.5	Hz.		The	modulating	(carrier)	signal	is	cos(13	π	t),	whose	frequency	is	at	6.5	Hz.	

13 13
5 /6 5 /6

13 13 5 /6 14 5 /6 12 5 /6 12 5 /6 14

13

( ) [12 7sin( / 3)]cos(13 ) [12 7cos( / 3 / 2)]cos(13 )
7[12 ( )]
2 2

76 6 [ ]
4

(6 6

j t j t
j j t j j t

j t j t j j t j j t j j t j j t

j t

x t t t t t
e ee e e e

e e e e e e e e e e

e e

π π
π π π π

π π π π π π π π π π

π

π π π π π π π
−

− −

− − − − −

−

= + − = + − −

+
= + +

= + + + + +

= + 13 5 /6 14 5 /6 14 5 /6 12 5 /6 127 7 7 7) ( ) ( )
4 4 4 4

7 5 7 5cos(12 ) 12cos(13 ) cos(14 )
2 6 2 6

j t j j t j j t j j t j j te e e e e e e e

t t t

π π π π π π π π π

π π
π π π

− − − −+ + + +

= + + + −

	

A1	=	7/2	=	3.5	 	 ω1	=	12π	(rad/s)		 φ1	=	5π/6	(rad)	 	
A2	=	12			 	 ω2	=	13π	(rad/s)		 φ2	=	0	(rad)	
A3	=	7/2	=	3.5	 	 ω3	=	14π	(rad/s)		 φ3	=	-5π/6	(rad)	

Part	(b):		Note	that	the	message	signal	has	been	shifted	to	the	right	by	6.5	Hz.		A	similar	shift	
in	frequency	also	occurs	to	the	left,	which	makes	sense	becaue	x(t)	is	real-valued.	
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3. Prologue:	 In	 a	 chirp	 signal,	 as	 mentioned	 in	 Section	 3-8	 of	 Signal	 Processing	 First,	 the	
principal	frequency	increases	(or	decreases)	with	time.	

In	active	sonar	systems,	the	transmitter	plays	out	a	“ping”	as	sound	 in	form	of	a	chirp	and	
then	receives	sound.	The	time	elapsed	between	the	transmission	and	reception	of	the	chirp	
indicates	 the	round	trip	 time	experienced	by	 the	signal	after	bouncing	off	an	object	 in	 the	
water	 and	 returning	 to	 the	 receiver.	 By	 receiving	 sounds	 in	 different	 directions	 using	
multiple	microphones,	the	sonar	can	build	a	map	of	the	objects	in	the	water.		

This	 kind	 of	 ranging	 approach	 can	 also	 be	 used	 for	 positioning	 and	 navigation.	 Bats	 use	
chirps	 for	 echolocation.	 Pipestrelle	 bats	 uses	 chirps	 that	 sweep	 down	 from	 70	 to	 45	 kHz.	
https://www.wildlife-sound.org/resources/equipment/2-uncategorised/233-recordings-of-
ultrasonic-vocalisations-of-bats	

When	one	measures	 the	 response	of	 a	 system	 to	different	 frequencies,	 a	 time-consuming	
approach	is	to	input	a	single	sinusoid,	measure	the	output,	and	repeat	using	many	different	
frequencies.	Instead,	inputting	a	chirp	can	allow	the	measurement	to	performed	in	one	take.	

4G	 cellular	 communication	 systems	periodically	 send	 a	 Zadoff-Chu	 chirp	 sequence	 to	 help	
measure	the	distortion	in	the	electromagnetic	propagation	from	transmitter	to	receiver.	

Part	(a):		MATLAB	code	to	generate	the	chirp	signal:	

 
Part	b:		The	chirp	signal	can	be	played	as	an	audio	signal	in	MATLAB:	

 
The	chirp	linearly	sweeps	frequencies	from	20	to	4220	Hz,	and	sounds	like	a	note	increasing	
in	“pitch”	over	time.	The	sweep	spans	8	octaves	of	A	notes	on	a	Western	scale:	27.5,	55,	110,	
220,	440,	880,	1760,	3520	Hz.	See	https://en.wikipedia.org/wiki/Piano_key_frequencies.	

Part	(c):		We	can	visualize	the	variation	of	the	principal	frequency	over	time	by	using	a	time-
frequency	representation.	The	time-frequency	representation	below	is	called	a	spectrogram.	

The	 spectrogram	 for	 the	 chirp	 signal	 (next	 page)	 shows	 the	 principal	 frequency	 changing	
over	 time	 with	 a	 linear	 slope.	 At	 the	 beginning,	 the	 principal	 frequency	 is	 at	 20	 Hz	 and	
increases	 linearly	 to	 4220	Hz.	 The	principal	 frequency	has	 the	highest	magnitude	 at	 every	
instant	of	time	throughout	the	entire	duration	of	the	chirp	signal,	which	is	shown	in	yellow.	

As	described	on	lecture	slides	4-8	and	4-9,	a	spectrogram	takes	the	first	Nwin	samples	of	the	
signal,	weights	the	values	(using	a	rectangular	pulse	by	default),	computes	the	Fourier	series	
coefficients,	 and	 plots	 the	 magnitude	 of	 the	 Fourier	 series	 coefficients	 vertically.	 The	
spectrogram	then	shifts	the	time	signal	to	the	right	and	repeats	the	previous	steps	using	a	
block	of	the	next	Nwin	samples.	The	frequency	resolution	of	the	spectrogram	is	fs	/	Nwin.		

time = 10;      % length of time in seconds 
f0 = 20;        % specify starting principal frequency 
fstep = 420;    % specify frequency slope 
fs = 44100;     % sampling rate 
Ts = 1/fs;      % sampling time: time interval between samples 
t = 0 : Ts : time;  % create a time vector 
theta = 2*pi*(f0+0.5*fstep*t).*t; 
y = cos(theta);   % create chirp waveform 
 

sound(y, fs);         % play back chirp signal 
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In	the	code	below,	a	Hamming	window	is	used	to	weight	the	values	in	each	block	of	samples.			

 
	

	

	

	

	

	

	

	

	

	

	

Although	not	asked,	we	can	increase	the	frequency	resolution	by	increasing	the	block	size:	

	
	

	

	

	

	

	

	

	

figure; 
spectrogram(y, hamming(256), 128, 256, fs, 'yaxis') 
ylim([0,5]); 
title('Spectrogram of the signal'); 
ylabel('Frequency(kHz)');  
xlabel('Time(s)'); 
 

figure; 
spectrogram(y, hamming(1024), 512, 1024, fs, 'yaxis') 
ylim([0,5]); 
title('Spectrogram of the signal'); 
ylabel('Frequency(kHz)');  
xlabel('Time(s)'); 
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4. Prologue:	This	problem	explores	various	audio	effects	by	applying	nonlinear	operations	to	a	
sinusoidal	signal.		It	also	explores	what	happens	to	the	frequency	component	of	a	sinusoidal	
signal	due	to	nonlinear	operations.	This	is	a	common	approach	in	analyzing	how	a	nonlinear	
system	(e.g.	a	diode	or	transistor)	responds	to	different	frequencies.	Among	the	nonlinear	
operations,	parts	(a),	(b)	and	(c)	can	be	used	in	amplitude	demodulation	(see	the	Prologue	
for	Problem	2).	The	nonlinear	operation	in	part	(d)	is	a	type	of	frequency	modulation.	

Solution:		MATLAB	code	for	generating	and	playing	x(t)	and	output	signals	for	parts	(a)-(d):	

	
	

x(t)	only	
contains	the	
frequencies	
±440	Hz,	and	
the	
spectrogram	
shows	this.		

	
	
	
	

f0 = 440; 
fs = 8000; 
Ts = 1/fs; 
t = 0:Ts:5; 
x = cos(2*pi*f0*t); 
y_a = abs(x); 
y_b = x.^2; 
y_c = x.^4; 
y_d = cos(pi*x); 
 
figure(1) 
spectrogram(x, hamming(256), 128, 256, fs, 'yaxis') 
sound(x,fs) 
pause(8); 
 
figure(2) 
spectrogram(y_a, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_a,fs) 
pause(8); 
 
figure(3) 
spectrogram(y_b, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_b,fs) 
pause(8); 
 
figure(4) 
spectrogram(y_c, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_c,fs) 
pause(8); 
 
figure(5) 
spectrogram(y_d, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_d,fs) 
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Part	(a):		The	fundamental	period	of	y(t)	is	different	from	fundamental	period	of	x(t).	
In	order	to	be	periodic	y(t)	=	y(t+T0)	and	T0	is	the	fundamental	period	where	T0	=	1/880	(s)	
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So,	y(t)	contains	an	infinite	number	of	even	harmonics	of	440	Hz,	which	correspond	to	
frequencies	of	±880k	where	k	is	an	integer	value.		As	expected,	we	can	hear	a	higher	
frequency	sound.	The	sound	feels	as	higher	number	of	frequencies	are	present	(less	
‘thin’	than	a	pure	cosine).	The	Sampling	Theorem	says	to	choose	the	sampling	rate	so	
that	fs	>	2	fmax.		After	dividing	both	sides	by	2,	fmax	<	½	fs.		Sampling	at	8	kHz	will	only	
capture	harmonic	frequencies	below	4	kHz.	
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Part	(b):	

                        𝑦 𝑡 = 𝑐𝑜𝑠!(2𝜋440𝑡)	

                        𝑦 𝑡 =
1
2
+
1
2
cos (2𝜋880𝑡)	

									(Using	the	trig.	identity	cos(2θ)	=	2cos2(θ)	-1)	

y(t)	contains	0	Hz	and	±880	Hz,	which	are	even	harmonics	of	440	Hz	up	to	the	2nd	harmonic.	

Alternatively,	

                        𝑦 𝑡 = cos!(2𝜋440𝑡)	

                        𝑦 𝑡 = (𝑒!!!!!"! + 𝑒!!!!!!"!)!/4 	

                                 =
𝑒!!!!!"! +  𝑒!!!!!!"! + 2

4
=
1
2
+
cos 2𝜋880𝑡

2
	

								(Using	the	binomial	expansion	for	(a+b)2	=	a2+b2+2ab)	

It	sounds	‘thin’,	which	is	because	just	one	frequency	is	present	in	the	waveform,	while	in	
part	a,	higher	frequencies	could	be	heard.	

	
Part	(c):	

y(t) = x4 (t) = cos4(2π f0t) = (
e j2π f0t + e− j2π f0t

2
)4 = e

j8π f0t + e− j8π f0t + 4e j4π f0t + 4e− j4π f0t +6
16

= 0.375+0.5cos(4π f0t)+0.125cos(8π f0t) = 0.375+0.5cos(2π (880)t)+0.125cos(2π (1760)t)

	

(Using	the	binomial	expansion	for	(a	+	b)4		=		a4	+	b4	+	4	a3	b	+	4	a	b3	+6a2b2	)	

So,	y(t)	contains	the	frequencies	0	Hz,	±880Hz	and	±1760Hz,	which	are	the	even	harmonics	
of	440	Hz	up	to	the	4th	harmonic.	

This	sounds	as	if	it	has	a	frequency	between	the	signals	in	parts	(a)	&	(b).	The	sound	is	more	
‘thin’	than	part	(a),	while	it	is	not	pure	as	audio	in	part	b,	and	the	other	frequency	(±1760Hz)	
can	be	heard.	
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Part	(d):		Using	Taylor	series	expansion:	
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As	shown	in	the	above	formula,	y(t)	includes	(cos	(π	cos(2πf0t))2,	and	as	shown	in	part	(b)	
and	(c),	y(t)	=	cosn(2	pi	f0	t)	will	have	odd	harmonics	up	to	the	nth	harmonic	if	n	is	odd,	and	
even	harmonics	up	to	the	nth	harmonic	if	n	is	even	including	a	zero-frequency	component.	

Compared	to	parts	(b)	and	(c),	the	audio	signal	has	additional	harmonics.	

	


