Solution Set for Homework \#3 on Fourier Series and Sampling

Mr. Houshang Salimian \& Prof. Brian L. Evans

1. Prolog: This problem relates to square waves, their Fourier series, and how adding a DC value affects Fourier series coefficients.
Part (a): This signal is periodic with a fundamental period of $T_{0}=10 \mathrm{~s}$, and hence the fundamental frequency is $f_{0}=1 / T_{0}=0.1 \mathrm{~Hz}$. From Section 3.6.1 of Signal Processing First, the square wave has an infinite number of harmonic frequencies, and their strength decays inversely proportionally to the harmonic index k. For plotting the time domain signal in MATLAB, we'll want to pick a sampling rate f_{s} that is a multiple of f_{0} and that can capture the sudden transitions in amplitude at $-5 \mathrm{~s}, 0 \mathrm{~s}, 5 \mathrm{~s}$, $10 \mathrm{~s}, 15 \mathrm{~s}$, and 20 s . We'll need f_{s} to be a large multiple of $2 f_{0}$. For the plot below, we've chosen f_{s} to be 10 kHz .

```
T0 = 10;
f0 = 1/T0;
fs = 10^6 * f0;
Ts = 1 / fs;
t = -10 : Ts : 20;
% mod(t, TO) puts t in the fundamental period
% comparisons return 1 if true and 0 if false
x = 2 * ( mod(t, T0) >= 5 );
plot(t, x);
ylim( [-0.2 2.2] );
xlabel( 'time (seconds)');
```


Part (b):

To calculate a_{0}, the DC value, or signal average over a period should be calculated.

$$
a_{o}=\frac{1}{10}(5 \times 2)=1
$$

Part (c):

$a_{1}=\frac{1}{10} \int_{5}^{10} 2 e^{-j \frac{2 \pi}{10} t} d t=\frac{1}{10} \times\left.\frac{1}{-j \frac{2 \pi}{10}} 2 e^{-j \frac{2 \pi}{10} t}\right|_{5} ^{10}=-\frac{1}{j \pi}\left(e^{-j 2 \pi}-e^{-j \pi}\right)=j \frac{2}{\pi}=\frac{2}{\pi} e^{j \pi / 2}$

Part (d):

By adding a constant value to a signal, only the DC value of that signal changes. Therefore, all Fourier series coefficient, except a_{0} remain unchanged.
$\mathrm{b}_{0}=\mathrm{a}_{0}+1=2$
$b_{1}=a_{1}=\frac{2}{\pi} e^{j \pi / 2}$
2. Prolog: This problem concerns continuous-time sinusoids and their fundamental periods, and discrete-time sinusoids and their fundamental periods.
$x(t)=7 \sin (11 \pi t)=7 \cos \left(11 \pi t-\frac{\pi}{2}\right)$
In the continuous-time domain, the fundamental period is $(2 / 11)$ seconds:
$\omega_{0}=11 \pi \mathrm{rad} / \mathrm{s}$
$f_{0}=\frac{11 \pi}{2 \pi}=5.5 \mathrm{~Hz}$
$T_{0}=\frac{2}{11} \mathrm{~s}$
$\phi=-\frac{\pi}{2} \mathrm{rad}$
Part (a):
$\hat{\omega}_{0}=2 \pi \frac{f_{0}}{f_{s}}=2 \pi \frac{5.5 \mathrm{~Hz}}{10 \mathrm{~Hz}}=\frac{11}{10} \pi \mathrm{rad} / \mathrm{sample}$
from sampling at $f_{s}=10 \mathrm{~Hz}$, which gives
$x[n]=7 \cos \left(\frac{11 \pi}{10} n-\frac{\pi}{2}\right)$
This signal is under-sampled, because $f_{0}>f_{s} / 2$. The following shows aliasing due to folding that is caused by the under-sampling:
$x[n]=7 \cos \left(\frac{11 \pi}{10} n-\frac{\pi}{2}\right)=7 \cos \left(\frac{11 \pi}{10} n-2 \pi n-\frac{\pi}{2}\right)=7 \cos \left(-\frac{9 \pi}{10} n-\frac{\pi}{2}\right)=7 \cos \left(\frac{9 \pi}{10} n+\frac{\pi}{2}\right)$
$A=7, \varphi=\pi / 2 \mathrm{rad}$.

Part (b):

$\widehat{\omega}=2 \pi \frac{5.5 \mathrm{~Hz}}{5 \mathrm{~Hz}}=\frac{11}{5} \pi \mathrm{rad} / \mathrm{sample}$
from sampling at $f_{\mathrm{s}}=5 \mathrm{~Hz}$, which gives
$x[n]=7 \cos \left(\frac{11 \pi}{5} n-\frac{\pi}{2}\right)$

This signal is under-sampled, because $f_{0}>f_{s} / 2$. The following equation shows the effect of aliasing (but not related to folding) caused by the under-sampling:
$x[n]=7 \cos \left(\frac{11 \pi}{5} n-\frac{\pi}{2}\right)=7 \cos \left(\frac{11 \pi}{5} n-2 \pi n-\frac{\pi}{2}\right)=7 \cos \left(\frac{\pi}{5} n-\frac{\pi}{2}\right)$
$A=7, \varphi=-\pi / 2 \mathrm{rad}$.

Part (c):

$\hat{\omega}_{0}=2 \pi \frac{5.5 \mathrm{~Hz}}{15 \mathrm{~Hz}}=\frac{11}{15} \pi \mathrm{rad} /$ sample
This signal is $15 / 11$ times over sampled, because $f_{0}<f_{s} / 2$.
$x[n]=7 \cos \left(\frac{11 \pi}{15} n-\frac{\pi}{2}\right)$
$A=7, \varphi=-\pi / 2 \mathrm{rad}$

Part (d):
As shown at the beginning of this problem's solution:
$f_{0}=\frac{11 \pi}{2 \pi}=5.5 \mathrm{~Hz}$
$T_{0}=\frac{2}{11} \mathrm{~s}$
According to the hint that is provided for this solution, which comes from Handout D on DiscreteTime Periodicity, $x[n]$ is periodic with discrete-time period of N_{0} if $x[n]=x\left[n+N_{0}\right]$:
$x\left[n+N_{0}\right]=7 \cos \left(\frac{11 \pi}{15}\left(n+N_{0}\right)-\frac{\pi}{2}\right)=7 \cos \left(2 \pi \frac{11}{30} n+2 \pi \frac{11}{30} N_{0}-\frac{\pi}{2}\right)=7 \cos \left(2 \pi \frac{11}{30} n-\frac{\pi}{2}\right)$
Because 11 and 30 are relatively prime, the smallest possible positive integer for N_{0} is 30 samples.
Therefore, this discrete-time signal $x[n]$ is periodic with a fundamental period of 30 samples. Those 30 samples contain 11 continuous-time periods, which corresponds to 2.67 samples in each continuous-time period.

Although not required, here's a plot of $x(t)$ and $x[n]$ for part (d):

```
fs = 15;
Ts = 1/fs;
wHat = 2*pi*f0/fs;
NO = 30;
n = 0 : NO;
yofn = cos(wHat*n);
t = 0 : 0.01 : N0;
yoft = cos(wHat*t);
figure;
stem(n, yofn);
hold;
plot(t, yoft);
```


