Solution Set for Homework \#4 on Finite Impulse Response (FIR) Filter

By: Houshang Salimian \& Prof. Brian L. Evans

Problem 1:

Solution:

Part a:
Using a binomial expansion.
i. $(a+b)^{3}=(a+b)(a+b)^{2}=(a+b)\left(a^{2}+2 a b+b^{2}\right)=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
ii. $\quad \cos \left(2 \pi f_{0} t\right)=\left(\frac{e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}}{2}\right)$

$$
\begin{gathered}
\cos ^{3}\left(2 \pi f_{0} t\right)=\left(\frac{e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}}{2}\right)^{3}=\frac{1}{8}\left(e^{j 2 \pi\left(3 f_{0}\right) t}+3 e^{j 2 \pi f_{0} t}+3 e^{-j 2 \pi f_{0} t}+e^{-j 2 \pi\left(3 f_{0}\right) t}\right) \\
x(t)=\frac{1}{8} e^{j 2 \pi\left(3 f_{0}\right) t}+\frac{3}{8} e^{j 2 \pi f_{0} t}+\frac{3}{8} e^{-j 2 \pi f_{0} t}+\frac{1}{8} e^{-j 2 \pi\left(3 f_{0}\right) t} \\
\boldsymbol{a}_{\mathbf{3}}=\boldsymbol{a}_{-\mathbf{3}}=\frac{\mathbf{1}}{\mathbf{8}} \text { and } \boldsymbol{a}_{\mathbf{2}}=\boldsymbol{a}_{-\mathbf{2}}=\mathbf{0} \text { and } \boldsymbol{a}_{\mathbf{1}}=\boldsymbol{a}_{-\mathbf{1}}=\frac{\mathbf{3}}{\mathbf{8}} \text { and } \boldsymbol{a}_{\mathbf{0}}=\mathbf{0}
\end{gathered}
$$

$$
\cos ^{3}\left(2 \pi f_{0} t\right)=\frac{3}{4} \cos \left(2 \pi f_{0} t\right)+\frac{1}{4} \cos \left(2 \pi\left(3 f_{0}\right) t\right)
$$

Part b:
i. $\quad a_{0}=\frac{1}{2} \int_{-1}^{0} e^{t} d t+\frac{1}{2} \int_{0}^{1} e^{-t} d t=\frac{1}{2}\left[e^{t}\right]_{-1}^{0}+\frac{1}{2}\left[-e^{-t}\right]_{t=0}^{1}=\frac{1}{2}\left(1-e^{-1}\right)-\frac{1}{2}\left(e^{-1}-1\right)=1-e^{-1}$ $a_{0}=1-e^{-1}=0.6321$
ii. $\quad a_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} \cos \left(2 \pi f_{0} t\right) d t=\frac{1}{2 \pi f_{0} T_{0}}\left[\sin \left(2 \pi f_{0} t\right)\right]_{t=0}^{T_{0}}=\frac{1}{2 \pi}(0-0)=0$

Part c:

i.

We'll derive the formula by using the result from part ii below.

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} a^{n}=\lim _{N \rightarrow \infty} \frac{1-a^{N}}{1-a}=\frac{1}{1-a} \text { if }|a|<1
$$

because

$$
\lim _{N \rightarrow \infty} a^{N}=\left[\begin{array}{cc}
0 & \text { if }|a|<1 \\
\infty & \text { otherwise }
\end{array}\right.
$$

ii.

Solution: We'll derive a closed-form answer. Let's start with a slightly different indexing for n :

$$
\sum_{n=1}^{N} a^{n}=a+a^{2}+\cdots+a^{N-1}+a^{N}
$$

We'll reorder the addition of the terms to go from highest exponent to lowest:

$$
\sum_{n=1}^{N} a^{n}=a^{N}+a^{N-1}+\cdots+a^{2}+a=a\left(a^{N-1}+a^{N-2}+\cdots+a+1\right)
$$

The terms in parenthesis are from the result of dividing $a^{N}-1$ by $a-1$. We'll compute the polynomial division using long division:

$$
\sum_{n=1}^{N} a^{n}=a\left(a^{N-1}+a^{N-2}+\cdots+a+1\right)=a\left(\frac{a^{N}-1}{a-1}\right)=a\left(\frac{1-a^{N}}{1-a}\right)
$$

We can connect this summation with the form in the question:

$$
\sum_{n=0}^{N-1} a^{n}=\frac{1}{a} \sum_{n=1}^{N} a^{n}=\frac{1-a^{N}}{1-a}
$$

I based the above derivation on the content at
https://www.purplemath.com/modules/series7.htm

Second solution:

Let assume:

$S=\sum_{n=0}^{N-1} a^{n}$
By multiplying "a" to both sides of this equation:

$$
\begin{aligned}
& a S=a \sum_{n=0}^{N-1} a^{n}=\sum_{n=0}^{N-1} a^{n+1}=\sum_{n=1}^{N} a^{n} \\
& a^{0}+a S=a^{0}+\sum_{n=1}^{N} a^{n}=\sum_{n=0}^{N} a^{n} \\
& \sum_{n=0}^{N} a^{n}=a^{N}+\sum_{n=0}^{N-1} a^{n}=a^{N}+S \\
& a^{N}+S=a^{0}+a S \\
& S(1-a)=a^{0}-a^{N}=1-a^{N} \\
& S=\sum_{n=0}^{N-1} a^{n}=\frac{1-a^{N}}{1-a}
\end{aligned}
$$

Problem 2:

Solution:

Part a:

$y[n]=2 x[n]-3 x[n-1]+2 x[n-2]$
The values for $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$ are given in the following table.

\mathbf{n}	$<\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{x}[\mathrm{n}]$	0	1	2	3	2	1	1	1	1	1	1	1
$\mathbf{x}[\mathbf{n}-1]$	0	0	1	2	3	2	1	1	1	1	1	1
$\mathbf{x}[\mathbf{n}-\mathbf{2}]$	0	0	0	1	2	3	2	1	1	1	1	1
$\mathbf{y}[\mathbf{n}]$	0	2	1	2	-1	2	3	1	1	1	1	1

Part b:

Part c:

$\delta[n]=\left\{\begin{array}{l}1 \text { for } n=0 \\ 0 \text { for all } n \neq 0\end{array}\right.$
$h[n]=2 \delta[n]-3 \delta[n-1]+2 \delta[n-2]$

\mathbf{n}	$<\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\boldsymbol{\mathbf { n }} \mathrm{n}]$	0	1	0	0	0	0	0	0	0	0	0	0
$\delta[\mathrm{n}-\mathbf{1}]$	0	0	1	0	0	0	0	0	0	0	0	0
$\delta[\mathrm{n}-\mathbf{2}]$	0	0	0	1	0	0	0	0	0	0	0	0
$\mathbf{h}[\mathrm{n}]$	0	2	-3	2	0	0	0	0	0	0	0	0

Part d:

Problem 3:

Prologue: This problem introduces the convolution sum, and asks you to calculate it for a simple finite impulse response filter (L-point averaging filter) given an infinitely long input signal. The unit step signal models a physical action such as turning on a switch and leaving it on indefinitely. In discrete time, the unit step function $u[n]$ is zero in amplitude for $n<0$, and one in amplitude for $n \geq$ 0.

Part a:

The MATLAB function stepfun (n, n_{0}) implements $u\left[n-n_{0}\right]$ and is plotted on the right:
Unit-step signal turns on at $\mathrm{n}=0$ so
$u[n]= \begin{cases}1 & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}$
MATLAB code:

```
u = stepfun(n,0);
stem(n,u)
xlabel('n')
ylabel('u[n]')
ylim([-0.5 1.5])
```


Part b:

MATLAB Code:

$\mathrm{n}=-4: 6$;
$u=\operatorname{stepfun}(n, 0)$;
$x=\left(0.5 .{ }^{\wedge} n\right) .{ }^{*} u$;
stem (n, x)
xlabel ('n')
ylabel ('x[n]')
ylim([-0.5 1.5])

Part c:

In order to calculate $y[n]$, the value of $x[n]$ should be calculated for different parts of discrete-time range.

\mathbf{n}	$\mathbf{X}[\mathrm{n}]$	$\mathbf{X}[\mathrm{n}-1]$	$\mathbf{X [n - 2]}$	$\mathbf{X [n - 3]}$	$Y[\mathrm{n}]$
$-\mathbf{5}$	0	0	0	0	0
$-\mathbf{4}$	0	0	0	0	0
-3	0	0	0	0	0
$\mathbf{- 2}$	0	0	0	0	0
$\mathbf{- 1}$	0	0	0	0	0
$\mathbf{0}$	1	0	0	0	$1 / 4$
$\mathbf{1}$	$1 / 2$	1	0	0	$3 / 8$
$\mathbf{2}$	$1 / 4$	$1 / 2$	1	0	$7 / 16$
$\mathbf{3}$	$1 / 8$	$1 / 4$	$1 / 2$	1	$15 / 32$
$\mathbf{4}$	$1 / 16$	$1 / 8$	$1 / 4$	$1 / 2$	$15 / 64$
$\mathbf{5}$	$1 / 32$	$1 / 16$	$1 / 8$	$1 / 4$	$15 / 128$
$\mathbf{6}$	$1 / 64$	$1 / 32$	$1 / 16$	$1 / 8$	$15 / 256$
$\mathbf{7}$	$1 / 128$	$1 / 64$	$1 / 32$	$1 / 16$	$15 / 512$
$\mathbf{8}$	$1 / 256$	$1 / 128$	$1 / 64$	$1 / 32$	$15 / 1024$
$\mathbf{9}$	$1 / 512$	$1 / 256$	$1 / 128$	$1 / 64$	$15 / 2048$
$\mathbf{1 0}$	$1 / 1024$	$1 / 512$	$1 / 256$	$1 / 128$	$15 / 4096$

Part d:
$x[n]=a^{n} u[n]$
$x[n-k]= \begin{cases}0, & n<k \\ a^{n-k} & n \geq k\end{cases}$
$y[n]= \begin{cases}0, \quad n<0 \\ \frac{1}{L} \sum_{k=0}^{n} a^{n-k}=\frac{a^{n}}{L} \sum_{k=0}^{n} a^{-k}=\frac{a^{n}}{L}\left(\frac{1-a^{-(n+1)}}{1-a^{-1}}\right)=\frac{1}{L}\left(\frac{a^{n+1}-1}{a-1}\right), & 0 \leq n \leq L-1 \\ \frac{1}{L} \sum_{k=0}^{L-1} a^{n-k}=\frac{a^{n}}{L} \sum_{k=0}^{L-1} a^{-k}=\frac{a^{n}}{L}\left(\frac{1-a^{-L}}{1-a^{-1}}\right)=\frac{a^{n-L+1}}{L}\left(\frac{a^{L}-1}{a-1}\right), & n \geq L\end{cases}$
$y[n]= \begin{cases}0, & n<0 \\ \frac{1}{L}\left(\frac{a^{n+1}-1}{a-1}\right), & 0 \leq n \leq L-1 \\ \frac{a^{n-L+1}}{L}\left(\frac{a^{L}-1}{a-1}\right), & n \geq L\end{cases}$

Problem 4-

Prologue: For a discrete-time finite impulse response (FIR) filter with M+1 coefficients, the values of the coefficients are equal to the impulse response $h[n]$. Given input $x[n]$, the output $y[n]$ is given by
$y[n]=\sum_{k=0}^{M} h[k] x[n-k]$
This formula determines $y[n]$ by computing the discrete-time convolution of $x[n]$ and $h[n]$.
Deconvolution attempts to determine $h[n]$ when knowing the input $x[n]$ and the output $y[n]$.

Application. An application is in determining the acoustic response of a concert hall. One places an audio speaker on stage and a microphone at one of the seats at head height. A laptop controls the discrete-time signal being played over the audio speaker $x[n]$ and records the output of the microphone in discrete-time as $y[n]$. The values computed for $h[n]$ give a model for the acoustic response of the room. That is, given an audio signal $x[n]$, we can compute what a person in the concert hall would hear by convolving $h[n]$ and $x[n]$. This emulation of a concert hall is available on certain audio playback systems.

Approach. There are many methods for deconvolution, i.e. determining $h[n]$ when knowing the input $x[n]$ and the output $y[n]$. The method below uses the convolution formula for an FIR filter to compute the impulse response $h[n]$:
$y[n]=\sum_{k=0}^{M} h[k] x[n-k]$
Assuming that $h[n]$ and $x[n]$ are causal signals, i.e. their amplitude values are zero when $n<0$, the formula for the first output sample $y[0]$ gives us one equation in one unknown $h[0]$ because we know the values of $x[0]$ and $y[0]$:
$y[0]=h[0] x[0]$

We then solve for $h[0]$, which works as long as $x[0]$ is not zero. The next output sample gives us one equation in one unknown $h[1]$:
$y[1]=h[0] x[1]+h[1] x[0]$

We then solve for $h[1]$, which works as long as $x[0]$ is not zero.

Solution:

Part a:

$$
\begin{aligned}
& x[n]=u[n] \\
& y[n]=u[n-1]
\end{aligned}
$$

Using the formula on prologue, the value of $\mathrm{h}[\mathrm{n}]$ can be calculated.

$$
y[0]=h[0] x[0]
$$

So the value of $\mathrm{h}[0]$ can be calculated as: $\mathrm{h}[0]=0 / 1=0$

$$
\begin{aligned}
& y[1]=h[0] x[1]+h[1] x[0] \\
& h[1]=\frac{1-0}{1}=1
\end{aligned}
$$

$$
y[2]=h[0] x[2]+h[1] x[1]+h[2] x[0]
$$

$$
h[2]=\frac{1-0-1}{1}=0
$$

\mathbf{n}	$x[n]$	$y[n]$	$h[n]$
$\mathbf{0}$	1	0	0
$\mathbf{1}$	1	1	1
$\mathbf{2}$	1	1	0

We've stopped calculating values for $h[n]$ to see if we've finished. We can now compute the convolution of $h[n]$ and $x[n]=u[n]$ to see if we get $y[n]=u[n-1]$

$$
y[n]=\sum_{k=0}^{M} h[k] x[n-k]=x[n-1]=u[n-1]
$$

Now, if we place $x[n]=\delta[n]$, the output of system is $y[n]=h[n]$
$h[n]=\sum_{k=0}^{M} h[k] \delta[n-k]=\delta[n-1]$

Part b:

```
\(x[n]=u[n]\)
\(y[n]=\delta[n]\)
\(h[0]=\frac{y[0]}{x[0]}=1\)
\(h[1]=\frac{y[1]-h[0] x[1]}{x[0]}=-1\)
\(h[2]=\frac{y[2]-h[0] x[2]-h[1] x[1]}{x[0]}=0\)
```

\mathbf{n}	$\mathbf{x}[\mathrm{n}]$	$\mathbf{y}[\mathrm{n}]$	$\mathbf{h}[\mathrm{n}]$
$\mathbf{0}$	1	1	1
$\mathbf{1}$	1	0	-1
$\mathbf{2}$	1	0	0

We've stopped calculating values for $h[n]$ to see if we've finished. We can now compute the convolution of $h[n]$ and $x[n]=u[n]$ to see if we get $y[n]=\delta[n]$
$y[n]=\sum_{k=0}^{M} h[k] x[n-k]=x[n]-x[n-1]=u[n]-u[n-1]=\delta[n]$
Now, if we place $x[n]=\delta[n]$, the output of system is $y[n]=h[n]$
$h[n]=\sum_{k=0}^{M} h[k] \delta[n-k]=\delta[n]-\delta[n-1]$

Part c:

$x[n]=\left(\frac{1}{2}\right)^{n} u[n]$
$y[n]=\delta[n-1]$
$h[0]=\frac{y[0]}{x[0]}=0$
$h[1]=\frac{y[1]-h[0] x[1]}{x[0]}=\frac{1-0}{1}=1$
$h[2]=\frac{y[2]-h[0] x[2]-h[1] x[1]}{x[0]}=\frac{0-0-0.5}{1}=-0.5$
$h[3]=\frac{y[3]-h[0] x[3]-h[1] x[2]-h[2] x[1]}{x[0]}=\frac{0-0-0.25+0.25}{1}=0$

\mathbf{n}	$\mathbf{x}[\mathrm{n}]$	$\mathbf{y}[\mathrm{n}]$	$\mathbf{h}[\mathrm{n}]$
$\mathbf{0}$	1	0	0
$\mathbf{1}$	$1 / 2$	1	1
$\mathbf{2}$	$1 / 4$	0	-0.5
$\mathbf{3}$	$1 / 8$	0	0

We've stopped calculating values for $h[n]$ to see if we've finished. We can now compute the convolution of $h[n]$ and $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$ to see if we get $\mathrm{y}[\mathrm{n}]=\delta[\mathrm{n}-1]$

$$
y[n]=\sum_{k=0}^{M} h[k] x[n-k]=x[n-1]-\frac{1}{2} x[n-2]=\left(\frac{1}{2}\right)^{n-1} u[n-1]-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{n-2} u[n-2]=\left(\frac{1}{2}\right)^{n-1} \delta[n-1]=\delta[n-1]
$$

Now, if we place $x[n]=\delta[n]$, the output of system is $y[n]=h[n]$

$$
h[n]=\sum_{k=0}^{M} h[k] \delta[n-k]=\delta[n-1]-\frac{1}{2} \delta[n-2]
$$

