
EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Homework	#4	on	Finite	Impulse	Response	(FIR)	Filter	

By:	Houshang	Salimian	&	Prof.	Brian	L.	Evans	

Problem	1:	
	
Solution:		
Part	a:	
Using	a	binomial	expansion.	
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	 Part	b:	
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Part	c:	
	
i.	

We’ll	derive	the	formula	by	using	the	result	from	part	ii	below.	

lim
!→ !

𝑎!
!!!

!!!

= lim
!→ !

1 − 𝑎!

1 − 𝑎
=

1
1 − 𝑎

 if 𝑎 < 1	

because	

lim
!→ !

𝑎! = 0 if 𝑎 < 1
∞ otherwise

	

ii.	
	

Solution:		We’ll	derive	a	closed-form	answer.		Let’s	start	with	a	slightly	different	indexing	for	n:	

𝑎! = 𝑎 +  𝑎! +⋯+ 𝑎!!! + 𝑎!
!

!!!

	

We’ll	reorder	the	addition	of	the	terms	to	go	from	highest	exponent	to	lowest:	
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The	terms	in	parenthesis	are	from	the	result	of	dividing	aN-1	by	a-1.		We’ll	compute	the	
polynomial	division	using	long	division:	
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We	can	connect	this	summation	with	the	form	in	the	question:	

𝑎! =
1
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!

!!!

=
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!!!

!!!

	

I	based	the	above	derivation	on	the	content	at	

https://www.purplemath.com/modules/series7.htm		
	
Second	solution:	
	
Let	assume:	
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By	multiplying	“a”	to	both	sides	of	this	equation:	
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Problem	2:	
			
Solution:	
Part	a:	

[ ] [ ] [ ] [ ]2 3 1 2 2y n x n x n x n= − − + − 	

The	values	for	x[n]	and	y[n]	are	given	in	the	following	table.	
	

n		 <	0	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
x[n]	 0	 1	 2	 3	 2	 1	 1	 1	 1	 1	 1	 1	
x[n-1]	 0	 0	 1	 2	 3	 2	 1	 1	 1	 1	 1	 1	
x[n-2]	 0	 0	 0	 1	 2	 3	 2	 1	 1	 1	 1	 1	
y[n]	 0	 2	 1	 2	 -1	 2	 3	 1	 1	 1	 1	 1	

	
	
Part	b:	
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Part	c:	
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[ ] 2 [ ] 3 [ 1] 2 [ 2]h n n n nδ δ δ= − − + − 	

	
n		 <	0	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
δ[n]	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
δ[n-1]	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	
δ[n-2]	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	
h[n]	 0	 2	 -3	 2	 0	 0	 0	 0	 0	 0	 0	 0	
	

Part	d:	
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Problem	3:	

Prologue:	This	problem	introduces	the	convolution	sum,	and	asks	you	to	calculate	it	for	a	simple	
finite	impulse	response	filter	(L-point	averaging	filter)	given	an	infinitely	long	input	signal.		The	unit	
step	signal	models	a	physical	action	such	as	turning	on	a	switch	and	leaving	it	on	indefinitely.		In	
discrete	time,	the	unit	step	function	u[n]	is	zero	in	amplitude	for	n	<	0,	and	one	in	amplitude	for	n	≥	
0.	

Part	a:	

The	MATLAB	function	stepfun(n, n0)	implements	u[n-n0]	and	is	plotted	on	the	right:	

Unit-step	signal	turns	on	at	n=0	so	

1 0
[ ]

0 0
for n

u n
for n

≥⎧
= ⎨

<⎩
	

MATLAB	code:	

n = -4:6; 
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u = stepfun(n,0); 
stem(n,u) 
xlabel('n') 
ylabel('u[n]') 
ylim([-0.5 1.5]) 

	

Part	b:	

MATLAB	Code:	

n = -4:6; 
u = stepfun(n,0); 
x = (0.5.^n).*u; 
stem(n,x) 
xlabel('n') 
ylabel('x[n]') 
ylim([-0.5 1.5]) 
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Part	c:	

In	order	to	calculate	y[n],	the	value	of	x[n]	should	be	calculated	for	different	parts	of	discrete-time	
range.	

n	 X[n]	 X[n-1]	 X[n-2]	 X[n-3]	 Y[n]	
-5	 0	 0	 0	 0	 0	
-4	 0	 0	 0	 0	 0	
-3	 0	 0	 0	 0	 0	
-2	 0	 0	 0	 0	 0	
-1	 0	 0	 0	 0	 0	
0	 1	 0	 0	 0	 1/4	
1	 1/2	 1	 0	 0	 3/8	
2	 1/4	 1/2	 1	 0	 7/16	
3	 1/8	 1/4	 1/2	 1	 15/32	
4	 1/16	 1/8	 1/4	 1/2	 15/64	
5	 1/32	 1/16	 1/8	 1/4	 15/128	
6	 1/64	 1/32	 1/16	 1/8	 15/256	
7	 1/128	 1/64	 1/32	 1/16	 15/512	
8	 1/256	 1/128	 1/64	 1/32	 15/1024	
9	 1/512	 1/256	 1/128	 1/64	 15/2048	
10	 1/1024	 1/512	 1/256	 1/128	 15/4096	
	

Part	d: 
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Problem	4-		

Prologue:	For	a	discrete-time	finite	impulse	response	(FIR)	filter	with	M+1	coefficients,	the	values	of	
the	coefficients	are	equal	to	the	impulse	response	h[n].		Given	input	x[n],	the	output	y[n]	is	given	by	

0
[ ] [ ] [ ]

M

k
y n h k x n k

=

= −∑  

This	formula	determines	y[n]	by	computing	the	discrete-time	convolution	of	x[n]	and	h[n].	

Deconvolution	attempts	to	determine	h[n]	when	knowing	the	input	x[n]	and	the	
output	y[n].		

Application.		An	application	is	in	determining	the	acoustic	response	of	a	concert	hall.		One	
places	an	audio	speaker	on	stage	and	a	microphone	at	one	of	the	seats	at	head	height.		A	
laptop	controls	the	discrete-time	signal	being	played	over	the	audio	speaker	x[n]	and	
records	the	output	of	the	microphone	in	discrete-time	as	y[n].		The	values	computed	
for	h[n]	give	a	model	for	the	acoustic	response	of	the	room.		That	is,	given	an	audio	
signal	x[n],	we	can	compute	what	a	person	in	the	concert	hall	would	hear	by	convolving	h[n]	
and	x[n].		This	emulation	of	a	concert	hall	is	available	on	certain	audio	playback	systems.	

Approach.		There	are	many	methods	for	deconvolution,	i.e.	determining	h[n]	when	knowing	
the	input	x[n]	and	the	output	y[n].		The	method	below	uses	the	convolution	formula	for	an	
FIR	filter	to	compute	the	impulse	response	h[n]:	

0
[ ] [ ] [ ]

M

k
y n h k x n k

=

= −∑ 		

Assuming	that	h[n]	and	x[n]	are	causal	signals,	i.e.	their	amplitude	values	are	zero	when	n	<	0,	the	
formula	for	the	first	output	sample	y[0]	gives	us	one	equation	in	one	unknown	h[0]	because	we	
know	the	values	of	x[0]	and	y[0]:	

[0] [0] [0]y h x= 	

We	then	solve	for	h[0],	which	works	as	long	as	x[0]	is	not	zero.		The	next	output	sample	gives	us	one	
equation	in	one	unknown	h[1]:	

[1] [0] [1] [1] [0]y h x h x= + 		

We	then	solve	for	h[1],	which	works	as	long	as	x[0]	is	not	zero.	

	

Solution:	

Part	a:	

[ ] [ ]
[ ] [ 1]
x n u n
y n u n

=

= −
	

Using	the	formula	on	prologue,	the	value	of	h[n]	can	be	calculated.	
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[0] [0] [0]y h x= 	

So	the	value	of	h[0]	can	be	calculated	as:	h[0]	=	0/1	=	0	

[1] [0] [1] [1] [0]
1 0[1] 1
1

y h x h x

h

= +

−
= =

	

[2] [0] [2] [1] [1] [2] [0]
1 0 1[2] 0
1

y h x h x h x

h

= + +

− −
= =

	

	

n	 x[n]	 y[n]	 h[n]	
0	 1	 0	 0	
1	 1	 1	 1	
2	 1	 1	 0	
		

We've	stopped	calculating	values	for	h[n]	to	see	if	we've	finished.		We	can	now	compute	the	
convolution	of	h[n]	and	x[n]	=	u[n]	to	see	if	we	get	y[n]	=	u[n-1]	

0
[ ] [ ] [ ] [ 1] [ 1]

M

k
y n h k x n k x n u n

=

= − = − = −∑ 	

Now,	if	we	place	x[n]	=	δ[n],	the	output	of	system	is	y[n]	=	h[n]	

0
[ ] [ ] [ ] [ 1]

M

k
h n h k n k nδ δ

=

= − = −∑ 	

Part	b:	

[ ] [ ]
[ ] [ ]
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n	 x[n]	 y[n]	 h[n]	
0	 1	 1	 1	
1	 1	 0	 -1	
2	 1	 0	 0	
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We've	stopped	calculating	values	for	h[n]	to	see	if	we've	finished.		We	can	now	compute	the	
convolution	of	h[n]	and	x[n]	=	u[n]	to	see	if	we	get	y[n]	=	δ[n]	

0
[ ] [ ] [ ] [ ] [ 1] [ ] [ 1] [ ]

M

k
y n h k x n k x n x n u n u n nδ

=

= − = − − = − − =∑ 	

Now,	if	we	place	x[n]	=	δ[n],	the	output	of	system	is	y[n]	=	h[n]	

0
[ ] [ ] [ ] [ ] [ 1]

M

k
h n h k n k n nδ δ δ

=

= − = − −∑ 	

Part	c:	
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n	 x[n]	 y[n]	 h[n]	
0	 1	 0	 0	
1	 1/2	 1	 1	
2	 1/4	 0	 -0.5	
3	 1/8	 0	 0	
	

We've	stopped	calculating	values	for	h[n]	to	see	if	we've	finished.		We	can	now	compute	the	

convolution	of	h[n]	and		𝑥 𝑛 = !
!

!
𝑢[𝑛]	to	see	if	we	get	y[n]	=	δ[n-1]	
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∑
	

Now,	if	we	place	x[n]	=	δ[n],	the	output	of	system	is	y[n]	=	h[n]	

0

1[ ] [ ] [ ] [ 1] [ 2]
2

M
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=
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