
EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Homework	#6	on	Frequency	Responses	and	Z-Transforms	

By:	Mr.	Houshang	Salimian	&	Prof.	Brian	L.	Evans	

1.	Solution:		

a)	Find	the	impulse	response	of	a	four-point	averaging	filter	

( )1[ ] [ ] [ ] [ ] [ 1] [ 2] [ 3]
4

x n n h n n n n nδ δ δ δ δ= → = + − + − + − 	

In	order	to	define	δ[n]	in	MATLAB,	tripuls(n)	signal	function	can	be	used,	where	n	is	a	
discrete-time	input,	or	we	can	represent	h[n]	as	a	vector	of	values	[1/4 1/4 1/4 1/4 ].	

b)	The	Dirichlet	function	represents	the	frequency	response	of	the	filter	in	the	following	format.	

H e j
⌢
ω( ) = DL e j

⌢
ω( )e− j

⌢
ω (L−1)/2

	
where	DL e

j ⌢ω( ) = sin(
⌢
ωL / 2)

Lsin( ⌢ω / 2)
	

For	a	four-point	averaging	filter,	L=4	

H e j
⌢
ω( ) = sin(2 ⌢ω)

4sin( ⌢ω / 2)
e− j3

⌢
ω /2 	

c)	In	the	frequency	response	that		is	shown	by	Dirichlet	function,	amplitude	of	filter	is	equal	to	
DL(ejω).	It	should	be	considered	that	DL(ejω)	can	be	negative	or	positive,	so	the	frequency	
response	magnitude	is:	

H e j
⌢
ω( ) = sin(2 ⌢ω)

4sin( ⌢ω / 2)
	

MATLAB	Code:	
w	=	-pi:1/10000:pi;	
	H	=	sin(2*w)./(4*sin(w./2)).*exp(-j*3/2*w);	
M	=	abs(H);	
	phi	=	angle	(H);	
	plot	(w,M)	
xlim	([-pi	pi])	
ylim	([0	1.2])	
xlabel	('\omega(rad)')	
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ylabel	('Magnitude’)	
figure	
plot	(w,phi)	
xlim	([-pi	pi])	
	xlabel	('\omega(rad)')	
	ylabel	('Phase')	
	
An	L-point	averaging	filter	has	L-1	zeros	in	the	magnitude	response	over	one	period	of	the	
discrete-time	frequency	domain,	i.e.	ω	in	the	interval	(-π,	π],	at	discrete-time	frequencies	
2π/L, 2(2π/L),	etc.,	and	their	negative	counterparts.		For	the	4-point	averging	filter,	the	zeros	
are	at	discrete-time	frequencies	-2π/4,	2π/4, and	2(2π/4), i.e.	-π/2,	π/2, and	π. 

The	phase	response	is	a	line	of	slope	-3/2.		When	the	amplitude	function	goes	negative,	we	
multiply	it	by	-1	to	make	the	amplitude	value	positive	and	the	phase	term	by	-1	=	exp(j	π)	
which	causes	a	sudden	jump	in	phase	by	π	or	–π	at	the	frequency	of	a	zero.		A	zero	in	the	
magnitude	response	means	that	the	frequency	will	not	passs	through	the	filter.	

d)	For	finding	the	response	to	this	input,	we	should	calculate	frequency	response	at	frequencies	that	
are	present	in	x[n].	

y[n]= 5H (e j0 )+ 4 H (e j0.2π ) cos 0.2πn+∠H (e j0.2π )( )+3 H (e j0.5π ) cos 0.5πn+∠H (e j0.5π )( )
	

0( ) 1jH e = 	

0.2 0.3( ) 0.7694j jH e eπ π−= 	

0.5( ) 0jH e π = 	

( )[ ] 5 3.077cos 0.2 0.3y n nπ π= + − 	

e)	

	

x1[n]= x[n]u[n]

x1[n]=
x[n] for n ≥ 0
0 for n < 0

⎧
⎨
⎩

	

	 ( )1 1 1 1 1
1[ ] [ ] [ 1] [ 2] [ 3]
4

y n x n x n x n x n= + − + − + − 	

Hence,	y1[n]	=	y[n]	for	n≥3.	

2.	At	the	first	stage,	the	continuous-time	input	has	been	received	and	converted	to	a	discrete-time	
signal.	After	passing	through	the	four-point	averaging	filter,	similar	to	Problem	6.14,	it	is	
converted	to	a	continuous-time	output.		

First	we	should	convert	the	signal	to	a	discrete	time	with	fs	=	1000	Hz.	
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( ) 10 8cos(200 ) 6cos(500 / 4)x t t tπ π π= + + + 	

[ ] 10 8cos(0.2 ) 6cos(0.5 / 4)
1000s
nt nT x n n nπ π π= = ⇒ = + + + 	

In	Problem	6.14,	we	calculated	the	frequency	response	for	ω	=	0,	0.2π,	0.5π,	so	we	can	
calculate	y[n],	which	is	the	output	of	averaging	filter.	

( )
( )

0 0.2 0.2

0.5 0.5

[ ] 10 ( ) 8 ( ) cos 0.2 ( )

6 ( ) cos 0.5 / 4 ( )

j j j

j j

y n H e H e n H e

H e n H e

π π

π π

π

π π

= + +∠

+ + +∠
	

( )[ ] 10 6.156cos 0.2 0.3y n nπ π= + − 	

And	finally	the	output	is:	

( )( ) 10 6.156cos 200 0.3
1000
nt y t tπ π= ⇒ = + − 	

3.	a)		𝑦 𝑛 =  𝑥 𝑛 + 𝑥 𝑛 − 1 	for	n	>	0	and	x[-1]	as	a	necessary	condition	for	the	system	to	be	at	
rest.	The	impulse	response	is:	

	 ℎ 𝑛 =  𝛿 𝑛 + 𝛿 𝑛 − 1 	

By	performing	z-transform	we	can	calculate	transfer	function:	
1( ) 1H z z−= + 	

1( ) zH z
z
+

= 	

The	pole	(root	of	the	denominator)	is	at	z	=	0,	and	zero	(root	of	the	nominator)	is	at	z	=	-1.	
Using	zplane,	we	can	plot	zeros	and	poles.		
zplane([1 1]) 

In	the	following	plot,	pole	is	shown	by	×	and	zero	is	depicted	by	o;	hence,	the	system	has	
one	pole	in	z	=	0	and	one	zero	at	z	=	-1.	

	

b)	

[ ] [ ] [ 1]y n x n x n= − − 	

[ ] [ ] [ 1]h n n nδ δ= − − 	
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Transfer	function	is:	
1( ) 1H z z−= − 	

1( ) zH z
z
−

= 	

Therefore,	system	has	one	pole	at	z	=	0,	
and	one	zero	at	z	=	1.	
MATLAB	code:	
	zplane([1	-1])	

c)	

[ ] [ ] 2 [ 1] [ 2]y n x n x n x n= − − + − 	

[ ] [ ] 2 [ 1] [ 2]h n n n nδ δ δ= − − + − 	
1 2( ) 1 2H z z z−= − + 	

( )22 12 1( )
zz zH z

z z
−− +

= = 	

System	has	two	poles	at	z	=	0,	and	
two	zeros	at	z	=	1:	
zplane([1 -2 1]) 

	
4.	a)	Transforming	H(z)	to	time-domain:	

[ ] 1 3 [ 2] 2 [ 3] 4 [ 6]h n n n nδ δ δ= − − + − + − 	

h[n]	is	a	causal	signal	with	non-zero	extent	from	index	0	to	index	6,	and	x[n]	is	a	causal	signal	
with	non-zero	extent	from	index	0	to	index	4.		Since	y[n]	is	the	convolution	of	h[n]	and	x[n],	
y[n]	is	a	causal	signal	with	non-zero	extent	from	n	=	0	to	n	=	10.		So,	N1	=	0	and	N2	=	10.	

b)	The	z-transform	of	the	convolution	of	two	signals	h[n]	and	x[n]	in	the	discrete-time	domain	
becomes	the	product	H(z)	X(z)	in	the	z-domain.		When	h[n]	and	x[n]	are	of	finite	length,	each	
becomes	a	polynomial	in	z-1	in	the	z-domain,	and	computing	H(z)	X(z)	becomes	a	
multiplication	of	two	polynomials.		The	Matlab	command	conv	implements	convolution	via	
polynomial	multiplication.		

	 [ ] 2 [ ] [ 1] 2 [ 2] 4 [ 4]x n n n n nδ δ δ δ= + − − − + − 	

1 2 4( ) 2 2 4X z z z z− − −= + − + 	

( )( )1 2 4 2 3 6( ) ( ) ( ) 2 2 4 1 3 2 4Y z X z H z z z z z z z− − − − − −= = + − + − + + 	

1 2 3 4 5 6 7 8 10( ) 2 8 12 4 4 12 8 16Y z z z z z z z z z z− − − − − − − − −= + − + + − − + − + 	

y[n]= 2δ[n]+δ[n−1]−8δ[n− 2]+δ[n−3]+12δ[n− 4]− 4δ[n−5]− 4δ[n−6]+12δ[n−7]−8δ[n−8]+16δ[n−10]
	

h = [2 1 -2 0 4]; 
x = [1 0 -3 2 0 0 4]; 
conv(h, x) 
% Answer is [2 1 -8 1 12 -4 -4 12 -8 0 16] 


