
EE	313	Linear	Signals	&	Systems	(Fall	2018)	

Solution	Set	for	Homework	#7	on	Infinite	Impulse	Response	(IIR)	Filters	
CORRECTED	

By:	Mr.	Houshang	Salimian	and	Prof.	Brian	L.	Evans	

Prolog	for	the	Solution	Set.	Both	discrete-time	finite	impulse	response	(FIR)	filters	and	discrete-time	
infinite	impulse	response	(IIR)	filters	are	widely	used	in	practice.	They	are	both	used	in	speech	and	
audio	 processing.	 Speech	 compression/decompression	 algorithms	 on	 smart	 phones	 use	 IIR	 filters.	
Splitting	 the	audible	 range	 into	sub-woolfer	 (20-200	Hz),	wolfer	 (200-2000	Hz)	and	 tweeter	 (2000-
20000	Hz)	bands	in	audio	speakers	is	implemented	using	IIR	filters.	FIR	filters	are	more	common	than	
IIR	filters	in	image	and	video	processing;	however,	IIR	filters	are	used	in	image	display	and	printing.	
Analog-to-digital	 converters	 use	 IIR	 filters,	 and	 digital-to-analog	 converters	 use	 both	 FIR	 and	 IIR	
filters.		Both	FIR	and	IIR	filters	are	used	in	communication	systems.	

As	 the	 passband	 becomes	more	 and	more	 narrow,	 the	 number	 of	 FIR	 coefficients	 increases	 at	 a	
much	faster	pace	vs.	the	number	of	IIR	coefficients.	 	For	example,	 for	a	bandpass	filter	that	passes	
wolfer	frequencies	of	200	Hz	to	2000	Hz	in	a	discrete-time	audio	signal	sampled	at	48000	Hz	would	
require	 an	 FIR	 filter	 with	 4352	 coefficients	 or	 an	 IIR	 filter	 with	 33	 coefficients	 (obtained	 from	 16	
poles,	16	zeros,	and	1	gain).		Each	coefficient	represents	a	multiplication	when	computing	an	output	
sample;	hence,	the	wolfer	FIR	filter	requires	100	times	more	multiplications	than	the	wolfer	IIR	filter.	

When	we	had	analyzed	the	frequency	response	of	the	averaging	filter	on	homework	#6,	tuneup	#6,	
and	tuneup	#7,	we	had	seen	that	phase	response	is	linear	vs.	frequency.	Lecture	slide	9-9	derives	the	
magnitude	 and	 phase	 response	 for	 the	 two-point	 averaging	 filter.	 A	 linear	 phase	 response	
corresponds	 to	 a	 fixed	 delay	 (called	 the	 group	 delay)	 through	 the	 filter.	 See	 lecture	 slide	 9-8.	
Although	we	didn’t	have	the	chance	to	go	over	lecture	slides	9-8	and	9-9,	we	did	see	a	linear	phase	
response	for	a	3-point	lowpass	filter	on	lecture	slide	9-6.	Also,	the	bandpass	FIR	filter	based	on	the	
Hamming	window	in	mini-project	#2	had	linear	phase	(constant	group	delay).	

FIR	filters	can	be	designed	to	have	linear	phase	over	all	frequencies.		Although	this	is	not	possible	for	
IIR	 filters,	 IIR	 filters	 can	 be	 designed	 to	 have	 approximate	 linear	 phase	 over	 the	 passband.	Audio,	
imaging,	and	certain	communication	systems	are	very	sensitive	to	phase	distortion.	

IIR	 filters	 have	 one	 significant	 drawback—	 when	 implemented,	 they	 can	 become	 bounded-input	
bounded-output	(BIBO)	unstable	even	though	their	design	is	BIBO	stable.	FIR	filters	are	always	BIBO	
stable.	Please	see	lecture	slides	11-12	and	11-13	and	Handout	H	on	BIBO	Stability.	

Problem	1	

Prolog:	 	This	problem	asks	 you	 to	analyze	 seven	 linear	 time-invariant	 (LTI)	 filters	 in	 the	 frequency	
and	z	domains,	and	match	their	magnitude	response	to	one	of	six	example	responses.		This	problem	
is	intended	to	help	you	make	connections	between	the	time,	frequency	and	z	domains.		In	particular,	
the	problem	is	intended	to	build	experience	on	the	impact	of	poles	and	zeros	in	the	transfer	function	
in	the	z-domain	on	the	magnitude	response	of	a	filter.		Each	LTI	filter	is	observed	for	n	≥	0.		All	of	the	
initial	conditions	are	zero	as	a	necessary	condition	for	LTI	to	hold.	

MATLAB	code	is	given	at	the	end	of	the	problem	solution.	
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Concerning	the	connections	between	the	time,	 frequency	and	z	domains	 for	discrete-time	filters,	 I	
recorded	 a	 YouTube	 video	 in	 spring	 2014	 for	 the	 EE	 445S	 Real-Time	Digital	 Signal	 Processing	 Lab	
course.		Please	watch	from	the	1:29	mark	to	the	22:25	mark	and	from	43:01	to	the	end	(50:51)	at	

https://www.youtube.com/watch?v=WWEKNvvJBvs&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf		

Poles	or	zeros	at	the	origin	in	the	z-domain	have	no	impact	on	the	magnitude	response	between	the	
distance	from	any	point	on	the	unit	circle	𝑧 =  𝑒!!	to	the	origin	is	1	for	all	values	of	the	discrete-time	
frequency	𝜔.		When	a	group	of	poles	is	separate	in	angle	from	a	group	of	zeros,	the	angles	of	poles	
near	the	unit	circle	indicate	a	passband	of	the	filter	and	the	angles	of	zeros	on	or	near	the	unit	circle	
indicate	a	stopband	of	the	filter.		This	is	the	case	for	all	of	the	filters	below	except	filter	S2.		Filter	S2	
has	one	pole	and	one	zero	at	the	same	angle.		Their	radii	are	inversely	related,	and	this	gives	an	all-
pass	filter.		Please	see	Handout	I	on	All-Pass	Filters	at	

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20I%20All%20Pass%20Filters.pdf		

Solutions	

Filter	S1	is	given	as	a	difference	equation.		This	problem	was	the	subject	of	Tune-Up	Tuesday	#9.	
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To	calculate	zeros	and	poles,	we	calculate	roots	of	numerator	and	denominator,	respectively.	

Zeros:	 1 0 1z z+ = ⇒ = − .		Zero	on	the	unit	circle	at	angle	π indicates	that	frequencies	at	–π	and	
π rad/sample	are	zeroed	out	and	are	in	the	stopband.	

Poles:	 0.9 0 0.9z z− = ⇒ = 			A	pole	near	the	unit	circle	indicates	that	a	peak	in	the	magnitude	
response	occurs	at	the	pole	angle,	which	is	0	rad/sample.	The	passband	is	centered	at	0	rad/sample.	
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Frequency	response	matches	figure	A.	Frequency	response	shows	that	the	frequencies	around	zero	
are	passed	and	the	magnitude	decreases	for	higher	frequencies,	hence,	S1	is	a	low-pass	filter.	

Filter	S2	is	also	given	as	a	difference	equation.	

[ ] 0.9 [ 1] 9 [ ] 10 [ 1] [ ] 0.9 [ 1] 9 [ ] 10 [ 1]y n y n x n x n y n y n x n x n= − − + + − ⇒ + − = + − 	

( ) ( )1 1 1 1( ) 0.9 ( ) 9 ( ) 10 ( ) ( ) 1 0.9 ( ) 9 10Y z z Y z X z z X z Y z z X z z− − − −+ = + → + = + 	

1

1

( ) 9 10 9 10( )
( ) 1 0.9 0.9

Y z z zH z
X z z z

−+ +
= = =

+ +
	

Zero:	9 10 0 10 / 9 1.111z z+ = ⇒ = − = − .		Radius	is	the	inverse	of	the	radious	of	the	pole.	

Pole:	 0.9 0 0.9z z+ = ⇒ = − .		Pole	and	zero	are	at	the	same	angle	will	interact.		See	the	prolog.	

The	frequency	response	matches	figure	D.	This	filter	passes	all	frequencies	with	the	same	
magnitude,	i.e.	magnitude	=	10,	so	S2	is	an	all-pass	filter.	

Filter	S3	is	given	by	its	transfer	function	in	the	z	domain:	
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Zero:	 1 0 1z z− = ⇒ = .		Zero	on	the	unit	circle	at	angle	0 indicates	that	frequency	at	0	rad/sample	
is	zeroed	out	and	is	in	the	stopband.		In	fact,	the	stopband	is	centered	at	0	rad/sample.	

Pole:	 0.9 0 0.9z z+ = ⇒ = − .		A	pole	near	the	unit	circle	indicates	that	a	peak	in	the	magnitude	

response	occurs	at	the	pole	angle,	which	is	π	rad/sample.	The	passband	is	centered	at	π	rad/sample	

This	plot	matches	figure	B,	which	is	a	highpass	filter.	

Filter	S4	is	given	as	a	difference	equation:	
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We	can	calculate	the	roots	of	the	numerator	by	using	roots()	in	MATLAB.	

p	=	[1/4	1	3/2	1	1/4];	
roots(p)	

MATLAB	find	four	unique	roots	close	to	-1:		

Zeros:	 4 3 2
1 2,3 4

1 3 1 0 1.0002, 1 0.0002, 0.9998
4 2 4
z z z z z z j z+ + + + = ⇒ = − = − ± = − 	

The	correct	answer	is	a	repeated	root	at	z	=	-1,	which	is	correctly	indicated	in	the	pole-zero	plot.	

	

Having	four	repeated	zeros	at	angle	of	π	means	that	the	reduction	in	magnitude	at	frequencies	near	
π rad/sample	are	raised	to	the	fourth	power.		The	small	magnitude	values	become	much	smaller.	

Poles:	 4 0 0z z= ⇒ = 	Four	poles	at	z=0.		Poles	at	the	origin	in	the	z	domain	have	no	effect	on	the	
magnitude	response.	

Frequency	response	is	similar	to	Figure	F,	which	is	a	lowpass	filter.	
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Filter	S5	is	given	as	a	transfer	function	in	the	z	domain:	
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Zeros:	 4 3 2 1
1,2 3,41 0 0.3090 0.9511, 0.8090 0.5878z z z z z j z j− + − + = ⇒ = − ± = ± 	

Poles:	Four	poles	at	z=0.	

	
This	plot	is	shown	in	Figure	E.		According	to	the	frequency	response,	we	have	a	highpass	filter,	
because	it	has	high	gain	at	higher	frequencies	and	low	gain	at	lower	frequencies.		For	S3,	we	had	
another	high	pass	filter,	there	the	magnitude	in	stop	band	was	very	low	while	for	S5	we	can	see	that	
even	at	0,	considerable	magnitude	can	be	detected.	

Filter	S6	is	given	as	a	difference	equation:	
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Zeros:	 3 2
1 2,31 0 1,z z z z z j+ + + = ⇒ = − = ± 	

Poles:	 3 0 0z z= ⇒ = 	Three	poles	at	z	=	0.	
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The	frequency	response	is	like	figure	C,	and	it	represents	a	lowpass	filter.	

Filter	S7	is	given	as	a	difference	equation:	
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Poles:	 5 0 0z z= ⇒ = 	Five	poles	at	zero	

The	frequency	response	shows	a	lowpass	filter,	but	it	does	not	match	any	of	the	six	candidate	
magnitude	responses.	

MATLAB	code:	

%S1 
%feedforwardCoeffs = [ 1/2 1/2 ]; 
%feedbackCoeffs = [ 1 -0.9 ]; 
%------------------------------------------ 
%S2 
%feedforwardCoeffs = [ 9 10 ]; 
%feedbackCoeffs = [ 1 0.9 ]; 
%------------------------------------------- 
%S3 
%feedforwardCoeffs = [ 1/2 -1/2 ]; 
%feedbackCoeffs = [ 1 0.9 ]; 
%------------------------------------------- 
%S4 
%feedforwardCoeffs = [ 1/4 1 3/2 1 1/4 ]; 
%feedbackCoeffs = 1; 
%------------------------------------------- 
%S5 
%feedforwardCoeffs = [ 1 -1 1 -1 1 ]; 
%feedbackCoeffs = 1; 
%------------------------------------------- 
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%S6 
%feedforwardCoeffs = [ 1 1 1 1 ]; 
%feedbackCoeffs = 1; 
%------------------------------------------- 
%S7 
feedforwardCoeffs = [ 1 1 1 1 1 1 ]; 
feedbackCoeffs = 1; 
%------------------------------------------- 
figure; 
zplane(feedforwardCoeffs, feedbackCoeffs); 
W = -pi : 0.001 : pi; 
[H, W] = freqz( feedforwardCoeffs, feedbackCoeffs, W ); 
figure; 
plot(W, abs(H)); 
xlim([-pi pi]) 
xlabel('Radian Frequency') 
ylabel('Magnitude') 
	

Problem	2:		a)	This	system	is	formed	by	cascading	two	LTI	systems.	In	the	z-domain:	
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d)		MATLAB	code	

h1	=	[	1	5/6	];	
h2	=	[	1	-2	1	];	
h	=	conv(h2,	h1);	
zplane(h)	
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e) [ ] [ ]y n x n= 		so	 ( ) ( ) ( ) 1Y z X z H z= ⇒ = 	

f)	According	to	part	e,	H(z)	=	1	to	guarantee	input	and	output	are	equal.	Also,	from	part	(b)	

2 1( ) ( ) ( )H z H z H z= 	

1
2

51 ( ) 1
6

H z z−⎛ ⎞= +⎜ ⎟
⎝ ⎠

	

2
1

1( ) 51
6

H z
z−

=
+

	

g)	H2	will	be	stable	if	its	poles	are	inside	the	unit	circle.	H2(z)	is	inverse	of	H1(z),	so	zeros	of	H1(z)	are	
poles	of	H2(z).	Therefore,	zeros	of	H1(z)	should	be	inside	the	unit	circle.	

Epilog:		Parts	(f)	and	(g)	concern	the	design	of	filter	H2	compensate	for	the	frequency	distortion	
introduced	by	filter	H1.		Equalizing	frequency	distortion	in	an	unknown	system	has	many	
applications,	including	display/printing	of	images,	calibrating	biomedical	instrumentation,	
compensating	phase	distortion	in	an	analog-to-digital	converter,	and	communication	receivers.		In	a	
communication	receiver,	the	channel	equalizer	compensates	for	frequency	distoriton	in	the	
communication	channel	as	well	as	in	the	analog/RF	circuits	in	the	transmitter	and	receiver.		


