EE 313 Linear Signals & Systems (Fall 2018)

Solution Set for Homework #8 on Continuous-Time Signals & Systems
By: Mr. Houshang Salimian & Prof. Brian L. Evans

Here are several useful properties of the Dirac delta functional (generalized function):
a) Unit area: ffooo S(x)dx =1
b) Sifting property: f; F()6(x — xg)dx = {

c) Evensymmetry: §(x) = 6(—x)
d) Relationship to the unit step function. %u(x) = 6(x).

f(xo),x0 € [a,b]
0 ,otherwise

Here are several comments about bounded-input bounded-output (BIBO) stability:

e) BIBO Stability: If input x(t) is bounded in amplitude, i.e. |x(t)| < B for a finite value B, then
output y(t) is always bounded in amplitude, i.e.|y(t)| < B; for a finite value B;. This
definition does not require the system to be LTI.

f) BIBO stability for LTI systems: For a continuous-time LTI system with an impulse response
h(t), BIBO stability reduces to ffomlh(t) |dt < oo. A derivation is given in problem 3 below.

g) BIBO stability for FIR filters: From f), it immediately follows that FIR filters are always BIBO
stable (if [h(t)| < == for all t). This is also reflected in the fact that all the poles of an FIR filter
are at z=0 (inside the unit circle), which implies stability.

Please see Handout | on Bounded-Input Bounded-Output Stability at
http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20H%20BIBO%20Stability.pdf

Convolution: Let c(t) = x(t)*y(t) => c(t) = ffooo x(D)y(t —1)dt = fjom x(t —1)y(t)dr
Problem 1:

a) In this question we can use the following property:
Ot —1)* f(1) = f(t-1,)
O(t-10)*[0(¢ +10) + 2eu(t) + cos(1002)] = & ((t -10)+ 10) +2e™ "y (t = 10) + cos(100z(¢ - 10))
= 5(t) + 2e”""u(t = 10) + cos(1007¢ —1000)

b) The Dirac delta functional is defined in terms of integration: (a) it has unit area at the origin
and (b) has a sifting property. The Dirac delta functional is waiting around to be integrated.
Please avoid simplifying expressions involving the Dirac delta that are not being integrated.

}cos(lOOyrt)[(S(t) +8(-0.002) [t = cos(O)} d(t)dt +cos(0.277) f d(t-0.002)dt

=1+co0s(0.27) =1.809

c) The Dirac delta functional is defined in terms of integration: (a) it has unit area at the origin
and (b) has a sifting property. The Dirac delta functional is waiting around to be integrated.
Please avoid simplifying expressions involving the Dirac delta that are not being integrated
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d ~2(1-2) _-2(1-2) d d 2-2)\ _ -2(-2) ~2(1-2)
Eﬂe ua—zﬂ_e Eﬂu@—2n+u0—mgﬂe )_e 8(t=2) =2 Dyt -2)

jcos(loo;n) [6(7)+8(7~0.002)]d7 = f [c0s(0)8() +cos(0.27)6 (7 ~0.002) |d7

-

= cos(o)ja(r)dr+cos(o.2ﬂ)j5(r-o.ooz)dr = u(t) +c0s(0.27m)u(t - 0.002) = u(t) +0.809u(t — 0.002)

Problem 2: This is averaging filter (unnormalized). Its output is the average of the previous two
seconds of input, the current input value, and the future two seconds of input. If a gain of % had

been applied, then we’d have a normalized averaging filter (normalized so that the area of the

absolute value of the impulse response is one).

y(t) = f

a)

b)

c)

d)

t+2
x(r)dt

t-2

t+2 t+2 t-2 t t

h(t) = fé(r)dr= fé(r)dr—fé(r)dr=fé(r’+2)dr’—fé(r"—2)dr"=u(t+2)—u(t—2)

Alternate Solution:

2 0, t<=-2
h(t) = fé(r)dr =11, 2<t<?2
=2 0, t=2

h(t) = u(t +2) - u(t - 2)

If [x(t)| < B forallt,then|y(t)| = |ftt:r22x(r)dr| < ftt:rzzlx(r)ldr < ftt_+22 Bdt = 4B
So, a bounded input generates a bounded output and hence the system is bounded-input
bounded-output (BIBO) stable.

A continuous-time LTI system is stable if and only if: f_oooolh(r)ldr < ©

Here, [*° |r(7)|dT = f_zz 1dt = 4 and the system is BIBO stable.
This system is not causal, because current output is dependant to future value of input. For

instance at t=1: y(1) = f_31 x(7)dt which shows that output at t=1 is related to input values

in future, i.e. t=1to 3.

Note: A continuous-time, LTI system is causal if and only if, h(t) = 0, for 7 < 0. In this
question, h(t) = 1, for — 2 < t < 0, which means this system is not causal.
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y(t) = }x(r)h(t -7)dr = }u(z‘ +D[u(t-7+2)-u(t-7-2)]dz

In order to calculate the convolution we should break time domain into three regions.
1* case (No overlap): for t+2 < -1=¢t < -3
In this case, x(t)and h(t — ) do not face any overlap, so y(t) = 0

}u(r+l)[u(f—r+2)—u(t—r—2)]d‘r=O

o t+2=2-1=1t=-3
2" case (partial overlap): for => -3 <t <1 there is partial overlap
t-2<-1=1t<l1

between x(t)and h(t — 1)
t+2 t+2

y(t) = fu(r+1)[u(t—r+2)—u(t—r—2)]dr= fldr=r|t_+12 =(t+2)-(-1)=t+3

3" case (complete overlap):
fort-2=-1=1t=1

t+2

Therefore:

WO = [ldr=7]=(+2)-(t-2)=4
t-2
0, t<=-3

y(@)=1t+3, -3=t<l

4, t=1

MATLAB code for plotting output:

fs = 8000;

t = -5: 1/fs :4;

yy = zeros(size(t));

yy (t>=-3 & t<1l) = t(t>=-3 & t<1)+3; S%Ssecond case -3 =< t < 1 and y(t) =
t+3

yy(t >= 1) = 4; % third case t >= 1 and y(t) = 4

plot (t,yy)

ylim

xlabel ('

t (s
ylabel ('y(t
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Problem 3:

x(1) = u(?)

Y(t) = x() * h(t) = }u(t -7)[6(r) -3¢ u(z) | d7 = }u(t ~7)d(t)d7 - }3e-3fu(r)u(z —7)dr = y,(t) + ()

y.(f) = }u(t ~2)d()dr = }u(t ~0)d(7)d = u(t)}é(r)dr —u(?)

0, t<0

y,(t) = —}36_3TM(T)M(Z‘ -7)dt = —}36"3’u(1 -T)dr=1 "'

—f3e‘3’dr =" = =1, =0
0

t
0

() = () * (1) = (1) + y,(0) =u(®) + [e™ =1 ]u(®) =e™"u(?)
See graphical flip-and-slide convolution on page 6.

MATLAB code:

clear all

fs = 8000;

t = -2: 1/fs :4;

unitstep = zeros(size(t)):

unitstep (t>= 0) = 1; % define unit step function

X = unitstep; % define input x(t) = u(t)

impulse = dirac(t); % define dirac delta function

idx = impulse == Inf;

impulse (idx) = 4;

h = impulse - 3*exp(-3*t).*unitstep; % h(t) is system response
y= exp (-3*t) .*unitstep; % y(t) = system's output for x(t) = ul(t)
figure

plot (t, x)

ylim([-0.5 1.5])
xlabel ('t(s)"'")
ylabel ('x(t)")

figure
plot(t,h)
xlabel ('t(s)"'")
ylabel ('h(t)")

figure

plot (t,y)
ylim([-0.5 1.5])
xlabel ('t(s)"'")
ylabel ('y(t)')
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Problem 4:

The impulse response for the first system will be calculated by placing:
x(1) =0(1)= y(1) = b (1)
(1) =0(1)-0(r-2)

Where the output of first LTI system, w(t), is W(¢) = h,(¢) * x(¢), and the output of second LTI

system is y(t) = h,(t)*w(t). Here, two systems are connected in cascade:

W(O) = by () *w(t) = by (6)* Iy (£)* x(2) = () * x(2)

The impulse response for the cascaded systems is:

h(t) = hy(1)* by (£) = u(1) *[8(2) = 8(t = 2) | = (1) * 8(6) - (1) * 6(t = 2) = u(t) - u(t -2)
MATLAB code:

clear all
fs = 8000;

t = -2: 1/fs :4;
unitstepO0 = t>= 0;

unitstep2 = t>= 2;

h = unitstepO0 - unitstep2; % h(t) 1is system response
figure
plot(t,h)
ylim ([-
xlabel ('
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ylabel ( (
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h(t

1.5 . . . . .

051 _

h(t)




