Fall 2021 EE 313 Linear Systems and Signals Prof. Evans

Homework \#1 Sinusoidal Signals

Assigned on Friday, August 27, 2021
Due on Friday, September 3, 2021, by 11:59 pm via Canvas submission
Late homework is subject to a penalty of two points per minute late.
Reading: McClellan, Schafer and Yoder, Signal Processing First, 2003, Ch. 1 \& 2. Errata. Companion Web site with demos and other supplemental information: http://dspfirst.gatech.edu/ Web site contains solutions to selected homework problems from DSP First.

E-mail address for Mr. Faris Tabbara (TA) is firas.tabbara@utexas.edu. Lecture hours and office hours for Mr. Tabbara and Prof. Evans on Zoom (see links on the Canvas calendar) follow:

Time Slot	Monday	Tuesday	Wednesday	Thursday	Friday
9:30 am				$\begin{aligned} & \text { Evans } \\ & \text { (Zoom) } \end{aligned}$	
10:00 am				Evans (Zoom)	
10:30 am					
11:00 am		Evans (EER 1.516)		Evans (EER 1.516)	
11:30 am		Evans (EER 1.516)		Evans (EER 1.516)	Evans (Zoom)
12:00 pm		Evans (EER 1.516)		Evans (EER 1.516)	Evans (Zoom)
12:30 pm		Evans (Zoom)			
1:00 pm		Evans (Zoom)			
1:30 pm					
2:00 pm					Evans (Zoom)
2:30 pm					Evans (Zoom)
3:00 pm					Tabbara (Zoom)
3:30 pm			Tabbara (Zoom)		Tabbara (Zoom)
4:00 pm			Tabbara (Zoom)		Tabbara (Zoom)
4:30 pm			Tabbara (Zoom)		

Prof. Evans is holding coffee/advising hours on Fridays 12-2pm at the EERC café during the fall semester from Aug. $27^{\text {th }}$ to Dec. $3^{\text {rd }}$ inclusive except Nov. $26^{\text {th }}$ (due to the Thanksgiving Holidays).

Feel free to stop by any Friday.

1. Finding Parameters of a Sinusoidal Waveform from a Plot. 20 points.

Signal Processing First, problem P-2.2, page 31, but use the plot below instead of the plot in Fig. P-2.2:

2. Using Phasors. 20 points.

Define $x(t)=120 \cos \left(\omega_{0} t\right)+120 \cos \left(\omega_{0} t+30^{\circ}\right)$
(a) Express $x(t)$ in the form $x(t)=A \cos \left(\omega_{0} t+\theta\right)$.
(b) Assume that $\omega_{0}=120 \pi \mathrm{rad} / \mathrm{s}$. Plot of $x(t)$ over the range $-0.05 s \leq t \leq 0.05 s$ in MATLAB. Please write and submit your MATLAB code.
(c) Find a complex-valued signal $z(t)$ such that $x(t)=\operatorname{Re}\{z(t)\}$.

Based on Signal Processing First, problem P-2.9, page 32.

3. Time Shift Corresponds to a Phase Shift. 20 points.

Signal Processing First, problem P-2.16, page 33.

4. Mobile Radio System. 40 points.

Signal Processing First, problem P-2.21, pages 34-35. Please see the book errata.
As sfafed on the course descripfor, "Discussion of homework questions is encouraged. Please be sure fo submif your own independent homework solufion."

NOTE: In your solutions, please pu\# all work for problem 1 fogefher, fhen all work for problem 2 fogether, efc. Please follow the ofher guidelines for your solutions on the homework page.

