
Fall 2021         EE 313 Linear Systems and Signals         Prof. Evans 

 

Mini-Project #1: Sinusoidal Speech Synthesis 

Solution Set 2.0a by Prof. Brian L. Evans 

September 17, 2021 

1.0 Introduction (3 points) 

This mini-project use of a sum of sinusoids to synthesize a recorded vowel sound in English [1] or 

another language. Vowel sounds have a nearly harmonic structure. Our goal will be to record a vowel 

sound and use enough sinusoidal terms to synthesize the vowel sound so that it is intelligible. Our first 

effort will to be use frequencies that are not harmonically related and then try to use ones that are. 

 

2.0 Overview (6 points) 

A continuous-time periodic signal with period T0 in seconds is composed of a constant term plus 

frequency components at integer multiples (harmonic) of a fundamental frequency f0 where f0 = 1 / T0.  

Fourier series analysis computes the constant term plus the magnitude and phase of each frequency term: 

 

where  and    

 

For any real-valued signal x(t), 𝑎−𝑘 = 𝑎𝑘
∗  where 𝑎𝑘 =

1

2
𝐴𝑘𝑒𝑗𝜙𝑘  , as shown in Section 3.1 of [2], 

 

 

 

We can synthesize x(t) by keeping a finite number of terms.  Sometimes, the synthesis is exact. 

When propagating in air, audio signals consist of propagating acoustic pressure waves.  A microphone 

can convert the intensity of the impinging acoustic pressure wave into an analog continuous-time voltage 

signal, which an analog-to-digital converter can convert into a digital discrete-time audio signal.  For 

playback, a digital-to-analog converter will convert the digital discrete-time audio signal into an analog 

continuous-time voltage signal, which can be converted into acoustic pressure waves by an audio 

speaker.  Common sampling rates for voice include 8000 Hz, 16000 Hz, and 32000 Hz as well as 11025 

Hz and 22050 Hz and for audio include 44100 Hz (audio CD) and its multiple 88200 Hz as well as 

48000 Hz for digital audio tape and its multiples 96000 Hz and 192000 Hz. 

 

3.0 Analyzing a Vowel Sound 

3.1 Time-Domain Analysis 

We can now analyze the recorded speech in the time domain. 

(a) 6 points. We record a spoken vowel sound of a long e using a standard speech processing sampling 

rate of 8000 Hz (i.e. 8000 samples/s) for 1s using the MATLAB code UTAudioRecordAndPlayback.m 

(see Appendix B).  That will give a vector 8000 speech amplitude values. 

(b) 6 points. A time-domain plot of the speech utterance using UTAudioTimeDomainAnalysis.m (see 

Appendix B) is give below on the left for the recording of a long e sound on the right: 



 
(c) 6 points. We compute the average value of the signal using MATLAB:   

mean(myRecording) 

  -1.4893e-05 

Speech and audio signals typically have an average value of 0 or close to zero.  The average value, or 

DC offset, cannot be perceived by the human auditory system.  The average value would occupy bits in 

the sampled data without conveying meaningful information to the human auditory system.  Moreover, 

playback systems typically pass frequencies within the range of normal human hearing of 20 Hz to 20 

kHz.  Some laptop playback systems, for example, cannot play frequencies below 200 Hz.  The highest 

frequency perceived by the human auditory system depends on age. 

(d) 6 points. The quiet regions before and after the speech utterance are circled below. 

 

Sound clip 

Long e sound 



(e) 6 points. The pitch period is an important quality 

in a human voice.  It corresponds to the period 

between the opening, closing, and reopening of the 

glottis in the vocal tract.  This opening and closing 

creates an impulsive flow of air from the lungs 

through the mouth and nose. The mouth and nose have 

a damped sinusoidal response, like the ringing of a 

bell. [3][4] For a vowel sound, the glottis opens and 

closes in a quasi-periodic fashion. 

In the time-domain plot window, we will zoom in to 

show a few pitch periods using the “Zoom In” tool and 

then use the “Data Tips” tool to find the specific times 

for the initial peak response each time the glottis 

opens. [3] The time from the first highlighted peak to 

the fourth highlighted peak corresponds to three pitch 

periods.  The average pitch period is (0.5375s - 0.51275s)/3 which is 8.25ms. A pitch period of 8.25ms 

corresponds to a pitch frequency of 121.2 Hz (i.e. 1/8.25ms is 121.2 Hz). 

The pitch frequency in a human voice is typically in the 

100-300 Hz range. An individual’s normal voice under 

non-stressful conditions would have a pitch frequency 

that does not vary too much from utterance to utterance 

in English. This might be different for tonal languages. 

 

3.2 Frequency-Domain Analysis 

Next, we analyze the speech in the frequency and time-

frequency domains. From Appendix B, we’ll use the 

UTAudioFreqDomainAnalysis.m script. 

(a) 6 points. The frequency content of the recorded 

speech is shown to the right in terms of the magnitude of 

each frequency component. Due to sampling at 8000 Hz, 

we capture frequencies in (-4000 Hz, 4000 Hz) because 

of the sampling theorem fs > 2 fmax where fmax is the 

highest frequency of interest and hence fmax < ½ fs.  The 

plot zooms into frequencies [-1500 Hz, 1500 Hz] 

because the vowel utterance has very low magnitudes 

outside that range.  The computation uses the discrete-

time Fourier series— see Appendix A for the connection 

to the continuous-time Fourier series. 

(b) 6 points. Shown on the right is the spectrogram for 

the recorded audio signal.  The spectrogram analyzes the 

frequency content of a block of samples at a time.  

Because the spectrogram only gets a small glimpse of 

the signal at any one time, the spectrogram would 

compute different strengths of the frequency 

Spectrogram 

Magnitude 



components than analyzing the entire signal in one short as in part (a). By default, the spectrogram uses 

a blue-yellow color map where bright yellow corresponds to the frequency component with the highest 

power, and dark blue corresponds to the frequency component with the lowest power, on a decibel scale.  

The yellow portions in the time domain match the appearance of the vowel sound utterance in part (d). 

(c) 6 points. From the spectrogram, we can extract the frequency corresponding to the strongest 

frequency component either manually or automatically.  Manually, we can place a “Data Tip” on the 

spectrogram and move it around horizontally and vertically with arrows on the keyboard.  Or we can 

write MATLAB code to compute it automatically by realizing that the spectrogram is a visualization of 

a matrix of magnitude values at a given frequency sample and time sample.  Using the code below, we 

find that the maximum magnitude value is 122.5 in linear units.  The spectrogram plots power values. 

spectValues = spectrogram(myRecording, blockSize, overlap, blockSize, fs, 'yaxis'); 

[maxValue, maxIndex] = max(abs(spectValues), [], 'all', 'linear'); 

[row,col] = ind2sub(size(spectValues), maxIndex); 

(d) 6 points. From the frequency-domain representation in part (a), 

we can find the gain, frequency, and phase for to the highest peak 

in positive frequencies.  We can use a “Data Tip” in MATLAB to 

find frequency at the peak as shown on the right, which is 246 Hz. 

In UTAudioFreqDomainAnalysis.m script, line 11 computes the 

exponential Fourier series coefficients using the fast Fourier 

transform (FFT).  Please see Appendix A for the connection 

between continuous-time and discrete-time Fourier series and the 

FFT.  Here’s line 11: 

fourierSeriesCoeffs = fft(myRecording); 

The format of the vector follows, keeping in mind that the first element in a vector in MATLAB is at 

index 1 and that fourierSeriesCoeffs has N = 8000 discrete-time Fourier series coefficients Xk.  

We are going to ignore the normalization between discrete-time and continuous-time Fourier series 

coefficients (see Appendix A) and handle the difference at audio playback using soundsc command: 

 At index 1, it contains X0 = a0. Should be real-valued and relatively small in magnitude. 

 At index 2, it contains X1 = a1 for frequency fs / N = 1 Hz.  

 At index 3, it contains X2 = a2 for frequency 2 fs / N = 2 Hz. 

 At index 4000, it contains X3999 = a3999 for frequency 3999 fs / N = 3999 Hz. 

 At index 4001, it contains X-4000 = a-4000 for frequency -4000 fs / N = -4000 Hz. 

 At index 8000, it contains X-1 = a-1 for frequency -1 fs / N = -1 Hz. 

We extract the exponential Fourier series coefficient for 246 Hz by accessing the 247th element of the 

vector fourierSeriesCoeffs, which is a complex number.  The absolute value will give the magnitude 

and the angle will give us the phase in radians over [-, ]: 

abs(fourierSeriesCoeffs(247)) 

     185.187 

angle(fourierSeriesCoeffs(247)) 

     -0.9878 

In the UTAudioFreqDomainAnalysis.m script, the fftshift command is used to swap the left half and 

right half of the vector fourierSeriesCoeffs for plotting. 



4.0 Synthesizing a Vowel Sound 

The previous section analyzed a recorded vowel sound (a 

long e) in the time and frequency domains.  In the frequency 

domain, the plot of the magnitude of the Fourier series 

coefficients consisted of a several peaks at nearly harmonic 

frequencies.  We will use Fourier synthesis to synthesize the 

vowel from a finite number of sinusoids: 

 

 

 

On the right is a closer look at the magnitude of the 

frequency domain representation for the long e sound 

recorded in the previous section.  The frequencies of the first 

six peaks are displayed.  Next, we try three different ways to 

synthesize the vowel sound. 

(a) 9 points. In the first synthesis approach, the frequencies f1, f2, …, fN will not be harmonically 

related.  We will use the positive frequencies at the peaks to look up the corresponding Fourier series 

coefficient value.  Per the discussion in Section 3.2(d), the first peak is at 124 Hz, which corresponds 

to index 125 in the vector fourierSeriesCoeffs.  Here are the frequencies of the 10 strongest 

components in the array abs(fourierSeriesCoeffs)in descending order: 246, 247, 245, 370, 371, 

369, 244, 372, 368, and 248 Hz.  We synthesize the vowel sound using the following MATLAB code: 

peakFreq = [ 246, 247, 245, 370, 371, 369, 244, 372, 368, 248 ]; 

freqIndices = peakFreq + 1; 

numFreq = length(peakFreq); 

numSamples = length(myRecording); 

 

%%% Define constant term 

A0 = fourierSeriesCoeffs(1); 

synthSound = A0*ones(1, numSamples); 

Ts = 1/fs; 

t = 0 : Ts : 1-Ts; 

 

for k = 1:numFreq 

    fk = peakFreq(k); 

    freqIndex = freqIndices(k); 

    ak = fourierSeriesCoeffs(freqIndex); 

    %%% Not including normalization in magnitude between discrete-time and 

    %%% continuous-time Fourier series coefficients; use soundsc instead 

    Ak = 2*abs(ak);  

    Phik = angle(ak); 

    synthSound = synthSound + Ak*cos(2*pi*fk*t + Phik); 

end 

soundsc(synthSound, fs); 

When using the 10 strongest frequency components, the synthesized sound has a higher volume over 

the times the vowel sound was uttered, but the synthesized sound is not intelligible as a vowel sound. 

(b) 9 points. The second synthesis approach will be to use harmonically related frequencies.  We’ll 

magnitude 



start with the positive frequencies marked in the plot above and alter them to make them harmonic.  

The frequencies are 124, 246, 370, 491, 615, 741 Hz, and correspond to f0 and its first five multiples. 

freqs = [ 124, 246, 370, 491, 615, 741]; 

f0est = mean( freqs ./ [1 2 3 4 5 6] ); 

Here, f0est is 123.26 Hz.  Harmonic frequencies could be 123, 

246, 369, 492, 615, and 738 Hz.  We could reuse the code in part 

(a) with the first line changed: 

peakFreq = [ 123, 246, 369, 492, 615, 738 ]; 

The synthesis sounds like a musical note being played.  On the 

Western scale, these frequencies correspond to harmonics of ‘B’ 

in the second octave, which is at 123.47 Hz. [6] 

(c) 9 points.  In the third synthesis approach, we used the 

UTAudioSynthUsingInvFFT.m script in Appendix B to determine 

the number of positive and negative frequencies needed to 

synthesize the vowel sound by trial-and-error by changing the 

value of Nkeep.  The script keeps the Nkeep strongest frequency 

components.  We found that the synthesized vowel sound was 

intelligible when Nkeep = 800, i.e. 400 negative and 400 positive 

frequencies.  Here’s the resulting synthesis in the time domain. 

 

5.0 Conclusion (10 points) 

The Fourier series is a powerful tool for analyzing the frequency content in one period of a periodic 

signal in both continuous-time and discrete-time domains.  The Fourier series is also a powerful tool 

for synthesizing a signal from its Fourier series components.  In practice, the Fourier synthesis might 

be incomplete in the continuous-time domain because only a finite number of terms can be used; 

however, the Fourier series for a discrete-time signal is fully characterized by a finite number of terms.  

Fourier series can also be applied to a finite-time interval of a non-periodic signal by assuming the 

interval represents a fundamental period of a periodic signal.  When applying the Fourier series, the 

Fourier series coefficients would indicate the average magnitude and phase of each harmonic 

frequency during the finite-time interval.  The analysis would not be able to indicate when a frequency 

occurred.  To determine the time a frequency occurs, a spectrogram can be used to break the finite-

time interval into smaller, overlapping time intervals on which Fourier series analysis is performed. 

 

References 

[1] “Introduction to English Vowel Sounds”, accessed Sept. 14, 2021. 

[2] J. H. McClellan, R. W. Schafer and M. A. Yoder, Signal Processing First, 2003. Errata. Companion Site. 

[3] M. Hasegawa-Johnson, “Lab 1”, ECE 498H Signal & Image Analysis, University of Illinois Urbana-

Champaign, Fall 2014. 

[4] “Human Voice”, Wikipedia, accessed Sept. 14, 2021. 

[5] R. J. McAulay and T. F. Quatieri, “Speech Analysis/Synthesis Based on a Sinusoidal Representation”, IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 4, August 1986, pp. 744-754. 

[6] https://en.wikipedia.org/wiki/Piano_key_frequencies  

   

Synthesized sound clip 

Long e sound 

https://pronuncian.com/introduction-to-vowels
http://www.ee.gatech.edu/users/mcclella/
http://www.ee.gatech.edu/users/478/
http://www.rose-hulman.edu/Class/ee/HTML/html/dr._yoder.html
https://www.pearson.com/us/higher-education/product/Mc-Clellan-Signal-Processing-First/9780130909992.html
http://dspfirst.gatech.edu/spfirst/SPFirst-errata.pdf
http://dspfirst.gatech.edu/
http://isle.illinois.edu/speech_web_lg/coursematerials/ece401/17spring/fa2014lab1.pdf
https://en.wikipedia.org/wiki/Human_voice
https://en.wikipedia.org/wiki/Piano_key_frequencies


Appendix A: Connections Between Continuous-Time and Discrete-Time Fourier Series 

 

Continuous-Time Fourier Series. A continuous-time periodic signal x(t) with period T0 sec is composed 

of a constant term plus frequency components at integer multiples (harmonic) of a fundamental 

frequency f0 where f0 = 1 / T0.  Fourier series analysis computes the constant term a0 plus the magnitude 

and phase of each frequency term ak where k is any integer: 

 

where  and    

 

An infinite number of coefficients could be needed to exactly represent x(t). 

Discrete-Time Fourier Series.  A discrete-time periodic signal x[n] with period N samples is composed 

of a constant term plus frequency components at integer multiples (harmonic) of a fundamental 

frequency of 2𝜋/𝑁 rad/sample which is equivalent to fs / N in Hz.  Fourier series analysis computes the 

constant term X[0] plus the magnitude and phase of each frequency term X[k] for k = 0, 1, …, N-1. 

     

 

 

A finite number of Fourier series coefficients would always be needed to exactly represent x[n]. 

Normalization.  The scaling of the Fourier series coefficients is different in continuous-time vs. 

discrete-time.  When using the discrete-time Fourier series to compute continuous-time Fourier series 

coefficients, we would have to divide the discrete-time Fourier series coefficient by N due the (1/N) 

term in the equation for x[n]. 

Fast Fourier Transform (FFT) is a fast algorithm to compute the N discrete-time Fourier series 

coefficients X[k] from the N samples of a discrete-time signal x[n].  As with the continuous-time 

Fourier series, the discrete-time Fourier series assumes that the N samples of x[n] represents the 

fundamental period of an infinitely long signal in the time domain.  Unlike the continuous-time 

Fourier series, the discrete-time Fourier series always has a finite number of terms, N.  One of the 

reasons for this is due to the Sampling Theorem, which says that the sampling rate fs > 2 fmax where fmax 

is the highest frequency of interest and hence fmax < ½ fs.  Sampling only captures continuous-time 

frequencies (-½ fs, ½ fs) whereas continuous-time signals have frequencies.  You can think of the 

discrete-time Fourier series as computing the Fourier series coefficients for frequency components 

from -½ fs to -½ fs, which is a finite number because fs > 0. 

The Fast Fourier Transform (FFT) is requires 2M log2 M real-valued multiplications and additions and 

4M words of memory instead of the 4 M2 and M2 + 4M, respectively, for the direct matrix-vector 

implementation of the discrete-time Fourier series.  The direct matrix-vector implementation to 

compute X[k] would create a complex-valued N x N matrix of the term exp(−𝑗 (2𝜋/𝑁) 𝑘𝑛) for k = 0, 

1, …, N-1 in one dimension and n = 0, 1, …, N-1 in the other, form a column vector of x[0], x[1], …, 

x[N-1], and multiply the matrix and vector to find the column vector of X[0], X[1], …, X[N-1]. 

 

  

where and 



Appendix B: MATLAB Scripts 

 

 
% UTAudioRecordAndPlayback.m 

 

% Record from the microphone 

fs = 8000; 

numBits = 16; 

numChannels = 1; 

recordingTime = 1; 

recObj = audiorecorder(fs, numBits, numChannels); 

disp('Start recording...'); 

recordblocking(recObj, recordingTime); 

disp('End recording.'); 

  

% Store data in double-precision floating-point array 

myRecording = getaudiodata(recObj); 

  

% Play back the recording with automatic scaling 

soundsc(myRecording, fs); 

 

% Remove DC value and normalize amplitude to [-1, 1] 

myRecording = myRecording - mean(myRecording); 

myRecording = myRecording / max(abs(myRecording)); 

  

% Save the data to a file 

waveFilename = 'shortAudioClip.wav'; 

audiowrite(waveFilename, myRecording, fs ); 

 

 

 

 
% UTAudioTimeDomainAnalysis.m 

 

% Read the contents of the audio file 

waveFilename = 'shortAudioClip.wav'; 

[myRecording, fs] = audioread(waveFilename); 

  

% Play back the recording with automatic scaling 

soundsc(myRecording, fs); 

 

% Plot the waveform in the time domain 

N = length(myRecording); 

Ts = 1/fs; 

t = 0 : Ts : (N-1)*Ts; 

figure; 

plot(t, myRecording); 

xlabel('t'); 

 

 
  



% UTAudioFreqDomainAnalysis.m 

 

% Read the contents of the audio file 

waveFilename = 'shortAudioClip.wav'; 

[myRecording, fs] = audioread(waveFilename); 

 

% Plot the magnitude of the frequency content 

% using a discrete-time version of the Fourier series 

% Zoom the frequency axis to [-1500 Hz, 1500 Hz] 

% to focus on the strongest frequency components 

fourierSeriesCoeffs = fft(myRecording); 

N = length(myRecording); 

freqResolution = fs / N; 

ff = (-fs/2) : freqResolution : (fs/2)-freqResolution; 

figure; 

plot(ff, abs(fftshift(fourierSeriesCoeffs))); 

xlabel('f'); 

xlim( [-1500, 1500] ); 

  

% Plot the spectrogram 

figure; 

blockSize = round(N/4); 

overlap = round(0.875 * blockSize); 

spectrogram(myRecording, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

 

 

 

% UTAudioSynthUsingInvFFT.m 

% Needs fourierSeriesCoeffs vector from UTAudioFreqDomainAnalysis.m 

  

Nseries = length(fourierSeriesCoeffs); 

fourierSeriesCoeffsAbs = abs(fourierSeriesCoeffs); 

  

Nkeep = 10; 

synthSoundCoeffs = zeros(Nseries, 1); 

 

% Find the Nkeep strongest positive and negative frequency components 

for n = 1:Nkeep 

    [ak, k] = max(fourierSeriesCoeffsAbs); 

    synthSoundCoeffs(k) = fourierSeriesCoeffs(k); 

    fourierSeriesCoeffsAbs(k) = 0; 

end 

 

% Convert Fourier series coefficients to time domain using inverse FFT 

synthSound = ifft(synthSoundCoeffs);     

soundsc(synthSound, fs); 

 

 


