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1.0 Introduction 

Wireless localization of objects in an environment has applications in automotive, cellular, sonar, and 

ultrasound systems. Automotive systems fuse data from radar systems and cameras mounted on the 

vehicle to detect stationary and moving objects in the environment.  In 6G cellular systems, basestations 

will use knowledge of the smart phone’s location to improve the connection speed, reliability and 

coverage.  By knowing the user equipment location, the basestation can know the wireless channel 

characteristics to tune the type and direction of transmission to the user equipment.  Sonar and ultrasound 

use acoustic waves to detect location of objects underwater and biological structures in vivo without 

invasive procedures, respectively, in much the same way that automotive radar and 6G cellular systems 

use electromagnetic waves.  Electromagnetic waves are produced by acceleration of electric charge or 

transition of electrons between energy levels in atoms [1], whereas acoustic waves are caused by 

mechanical vibration. This project will simulate a radar system that localizes an object in the 

environment using electromagnetic waves and signal processing [2] as shown in the diagram below. 

 

2.0  Overview 

Radar systems use electromagnetic waves to localize objects in an environment. A common radar 

technique is to transmit a short pulse and process the received signal to detect when the pulse returns.  

Using the estimated roundtrip time 𝑇𝑑, one can estimate the distance 𝑑 to the object using the speed of 

propagation of the electromagnetic wave in the environment 𝑐 (approximately the speed of light) via 

𝑑 =
1

2
 𝑐 𝑇𝑑 



The pulse is transmitted periodically to obtain periodic estimates of an object’s location.  The delay in 

sending the next pulse is long enough to allow the pulse to bounce off an object and travel back to the 

receiver.  Knowing the maximum distance to an object, one can determine how often to send pulses. 

This approach has two degrees of freedom: (1) pulse shape and (2) method to detect the pulse in the 

received signal.  We would like to choose a pulse shape that is resilient to the impairments experienced 

by the electromagnetic signal as it propagates through the air.  The next subsections describe wireless 

signal impairment, chirp signals as resilient pulse shapes, matched filtering for robust detection, and 

complex-valued signals. 

2.1 Wireless Signal Impairments 

A propagating electromagnetic waveform is reflected, scattered, and absorbed each time it impinges on 

an object in the environment, with metal objects providing strong reflections.  Each path from the 

transmitter to the object and back to the receiver will incur a different gain (attenuation) and delay. The 

additive combination of paths from transmitter to receiver causes time delays and frequency distortion.  

The relative motion between the object and the radar system causes a Doppler shift in frequency [7].  In 

addition, the electronics in the radar analog/RF front ends add thermal noise as well as their own 

frequency distortion. 

2.2 Chirp Signals As Resilient Pulse Shapes 

A chirp signal is resilient to many impairments experienced by propagating signals including thermal 

noise, delays, and frequency distortion. Chirp signals are also resilient to Doppler shifts due to the 

relative motion between the transmitter and receiver [7].  Chirp signals can be used not only to localize 

an object, but also estimate its velocity (speed). [8] 

In a chirp signal, as mentioned in Section 3-8 of [3], the principal frequency increases (or decreases) 

with time. Per the homework #2 solution set [4], chirp signals have a wide variety of applications: 

Active sonar systems. The transmitter sends out a “ping” as sound in form of a chirp and then receives sound. 

The time elapsed between the transmission and reception of the chirp indicates the roundtrip time experienced 

by the signal after bouncing off an object in the water and returning to the receiver. By receiving sounds in 

different directions using multiple microphones, the sonar can build a map of the objects in the water.  

Bats use chirps for echolocation. Pipestrelle bats use chirps that sweep down from 70 to 45 kHz. [5] 

Test & Measurement. When one measures the response of a system to different frequencies, a time-

consuming approach is to input a single sinusoid, measure the output, and repeat using many different 

frequencies. Instead, inputting a chirp can allow the measurement to performed in one take. 

4G/5G cellular communication systems periodically send a Zadoff-Chu chirp sequence to synchronize the 

transmitter and receiver as well as measure the frequency distortion in the electromagnetic propagation from 

transmitter to receiver (channel estimation). The Zadoff-Chu is a complex-valued chirp signal. [6] 

The radar system will use linear frequency modulated (FM) chirp signals to sweep a range of frequencies 

linearly with time.  The chirp will be complex-valued (see Section 2.4 on Complex-Valued Signals). 



2.3 Matched Filtering for Robust Detection 

Matched filtering detects a known pulse shape in a signal by correlating the signal with the known pulse 

shape. A detection is successful when the absolute value of the correlation signal exceeds a threshold. 

The matched filter gets its name from its impulse response ℎ(𝑡) being matched to the known pulse shape 

𝑔(𝑡) according to the following formula: 

ℎ(𝑡) = 𝐶 𝑔∗(𝑇 − 𝑡) 

We form ℎ(𝑡) by flipping 𝑔(𝑡) in time 𝑡, delaying by constant delay 𝑇, conjugating the amplitude, and 

scaling by non-zero constant 𝐶.  𝑇 is often chosen to make the impulse response causal.  The impulse 

response ℎ(𝑡) will have the same duration as the known pulse shape 𝑔(𝑡).  So, if the pulse shape is finite 

in duration, the matched filter will be a finite impulse response (FIR) filter. 

In discrete time, the matched filter impulse response ℎ[𝑛] is defined in terms of the pulse shape 𝑔[𝑛] as 

ℎ[𝑛] = 𝐶 𝑔∗[𝑁 − 𝑛] 

We form ℎ[𝑛] by flipping 𝑔[𝑛] in time 𝑛, delaying by constant delay 𝑁, conjugating the amplitude, and 

scaling by non-zero constant 𝐶. 𝑁 is often chosen to make the impulse response causal. The impulse 

response ℎ[𝑛] will have the same duration as the known pulse shape 𝑔[𝑛]. So, if the pulse shape is finite 

in duration, the matched filter will be an FIR filter. 
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2.4 Complex-Valued Signals 

Complex-valued chirp signals are used in radar and 4G/5G cellular systems, among others. Since in 

practice, a signal propagating through a medium is real-valued, we can transmit a complex-valued signal 

Here’s an example of how matched filtering works.  Consider a 

causal rectangular pulse for 𝑔[𝑛] of length 𝑁𝑔 samples and the 

corresponding matched filter impulse response ℎ[𝑛] with 𝑁 = 𝑁𝑔 

shown on the right.  When 𝐶 > 0, the matched filter output when 

𝑔[𝑛] is the input is a non-negative triangular pulse of 2 𝑁𝑔 − 1 

samples whose peak at index 𝑁𝑔 − 1 indicates a successful 

detection (below).  When a negated pulse arrives, e.g. due to 

reflection, the result is a non-positive triangular pulse of 2 𝑁𝑔 − 1 

samples whose valley at index 𝑁𝑔 − 1 indicates a successful 

detection. (This is equivalent to 𝐶 being negative in the plot of 

𝑔[𝑛] ∗ ℎ[𝑛] on the right.)  This is why it is common to threshold 

against the absolute value of the matched filter output to determine 

a successful detection.  Another common approach is to threshold 

against the absolute value squared of the matched filter output, 

which is the instantaneous power.  The matched filter is actually 

designed to maximize the received transmitted power. 

 

Peak 



by transmitting its real and imaginary components on separate channels through the medium. In 

communication systems, the separate channels are called in-phase (I) and quadrature (Q).  We can apply 

amplitude modulation using a cosine to a lowpass signal to generate the in-phase signal, and apply 

amplitude modulation by a sine to another lowpass signal to generate the quadrature signal.  By 

subtracting the quadrature signal from the in-phase signal, we would have one real-valued signal to 

transmit and receive.  Modulation by the cosine is orthogonal to modulation by sine, and hence, the IQ 

signals are in separate channels even though they are transmitted together.  This is known as Quadrature 

Amplitude Modulation, which is used in Wi-Fi, cellular, and other communication systems. 

 

3.0 Properties of the LFM Chirp Signal 

The radar system being simulated uses a complex-valued linear frequency modulated chirp signal 

𝑠(𝑡) =  𝑒𝑗𝜋
𝑊
𝑇

𝑡2

 for −
𝑇

2
≤ 𝑡 ≤

𝑇

2
 

The instantaneous frequency 𝑓𝑖 (𝑡) is the derivative with respect to time 𝑡 of the phase in radians 

divided by 2 to convert rad/s to Hz [2][8] 

𝑓𝑖(𝑡) =
1
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3.1 Sampled Chirp Signal 

(a) To aid in radar simulation, we create a discrete-time version 𝑠[𝑛] of the continuous-time chirp 

signal 𝑠(𝑡) by sampling at a rate 𝑓𝑠 = 𝑝 𝑊 where 𝑝 is the oversampling factor (𝑝 ≥ 1): 

𝑠[𝑛] =  𝑒𝑗2𝜋𝛼(𝑛−
𝑁
2

)
2

for 0 ≤ 𝑛 < 𝑁 

Next, we determine formulas for 𝛼 and 𝑁 in terms 𝑝 and time-bandwidth product 𝑇𝑊.  With sampling 

time 𝑇𝑠, the 𝑁 samples span 𝑇 seconds of continuous time, i.e. 𝑇 = 𝑁 𝑇𝑠 , from −
𝑇

2
≤ 𝑡 <

𝑇

2
 .  (Note 

that the endpoint at 
𝑇

2
 is not included when sampling.)  With 𝑓𝑠 = 𝑝𝑊 and hence 𝑇𝑠 =

1

𝑝𝑊
 , 

𝑇 = 𝑁𝑇𝑠 =
𝑁

𝑝𝑊
 

which gives 

𝑁 = 𝑝 𝑇 𝑊 

We can find the formula for 𝛼 by equating the first sample of 𝑠[𝑛] and 𝑠(𝑡): 

𝑠[0] = 𝑠 (−
𝑇

2
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(b) We convert the above equations for 𝛼 and 𝑁 into a Matlab function to synthesize a discrete-time 

chirp that has two arguments 𝑝 and 𝑇𝑊 and returns the complex-valued chirp signal 𝑠[𝑛]: 

function s = dchirp( TW, p ) 

% DCHIRP   generate a sampled chirp signal 

%   usage  s = dchirp( TW, p ) 

%          s : samples of a discrete-time "chirp" signal 

%              exp(j pi (W/T) t^2 )   for -T/2 <= t <= T/2 

%          TW : time-bandwidth product 

%          p : sample at p times the Nyquist rate (W) 

N = p*TW; 

alpha = TW / (2*N^2); 

n = 0 : N-1; 

s = exp(j*2*pi*alpha*(n - N/2).^2); 

(c) Next, we generate a sampled chirp signal using the dchirp function using the radar parameters in 

Table 10.1 [8].  The parameters are repeated below along with the oversampling ratio 𝑝 =
𝑓𝑠

𝑊
 : 

Parameter Symbol Value Units 

Pulse length 𝑇 25 s 

Swept bandwidth 𝑊 2 MHz 

Sampling frequency 𝑓𝑠  20 MHz 

Time-bandwidth product 𝑇𝑊 50 dimensionless 

Oversampling ratio 𝑝 10 dimensionless 
 

MATLAB code and plots of 𝑠[𝑛] and 𝑠(𝑡).  We’re plotting 𝑠(𝑡) as a sanity check on 𝑠[𝑛]. 
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As continuous time increases from -T/2 to 0, 

the chirp decreases in frequency from -W/2 

to 0, and increases in frequency from 0 to W/2 from time 0 to T/2.  In discrete time, this corresponds to 

a decrease in frequency as discrete time increases from 0 to (N-1)/2 and an increase in frequency as 

discrete time increases from (N-1)/2 to (N-1). 

(d) A discrete-time chirp with oversampling ratio of 𝑝 = 1.2 

is plotted on the right. Near the endpoints, the chirp exhibits 

sinusoidal behavior.  We’ll plot the real part. 

 

 

 

 

3.2 Fourier Transform of a Chirp 

The Fourier Transform measures the frequency 

components present on average in an interval of time.  

Even though the chirp is sweeping through a range of 

frequencies −
𝑊

2
≤ 𝑓 ≤

𝑊

2
, the chirp signal has 

frequency content that is similar to a rectangular pulse 

over −
𝑊

2
≤ 𝑓 ≤

𝑊

2
 (ideal lowpass signal).  The 

similarity increases with increasing time-bandwidth 

product 𝑇𝑊.  We will use the fast Fourier transform 

(see Appendix A) to plot the magnitude and phase of 

the frequency components using utplotspec.m (see 

Appendix B).  The chirp sweeps frequencies from -W/2 to 

W/2, i.e. from -1 MHz to 1 MHz according to the value 

for W in the table on page 5. 

%%% Discrete-time chirp 

TW = 50; 

p = 10; 

sofn = dchirp(TW, p); 

N = length(sofn); 

n = 0 : N-1; 

figure; 

plot(n, real(sofn)); 

xlabel('n'); 

figure; 

plot(n, imag(sofn)); 

xlabel('n'); 

 

%%% Continuous-time chirp 

T = 25E-6;    %% pulse length 25us 

W = 2E6;      %% swept bandwidth 2MHz 

fs = 20E6;    %% sampling rate 20 MHz 

Ts = 1/fs;     

t = (-T/2) : Ts : (T/2); 

soft = exp(j*pi*W*(t.^2)/T); 

figure; 

plot(t, real(soft)); 

xlim([-T/2 T/2]); 

xlabel('t'); 

figure; 

plot(t, imag(soft)); 

xlim([-T/2 T/2]); 

xlabel('t'); 

 

%%% Discrete-time chirp 

TW = 50; p = 1.2; 

sofn = dchirp(TW, p); 

N = length(sofn); 

n = 0 : N-1; 

figure; plot(n, real(sofn)); 

xlabel('n'); 

TW = 50; p = 10; 

sofn = dchirp(TW, p); 

fs = 20E6; Ts = 1/fs; 

utplotspec(sofn, Ts); 



4.0 Range Processing 

4.1 Pulse-Compression Matched Filtering 

(a) Convolution in time domain is multiplication in the frequency domain. The matched filter has a 

frequency response to cancel the phase of the frequency response of the pulse shape to maximize the 

magnitude squared (power) in the frequency domain.  In the frequency domain, the matched filter 

frequency response is ℋ(𝑓) =  𝑆∗(𝑓) or its equivalently its impulse response is 

ℎ(𝑡) = 𝑠∗(−𝑡) =  𝑒−𝑗𝜋
𝑊
𝑇

𝑡2

 

The output of the matched filter is  

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑠(𝑡 − 𝑇𝑑) 

Equation (2-2) in [8] included a gain 𝐺 in front of the 𝑠(𝑡 − 𝑇𝑑) without explanation.  The gain 𝐺 

likely represents attenuation experienced by the propagating waveform.  For this subsection, we’ll 

assume unity gain and no delay, i.e. 𝐺 = 1 and 𝑇𝑑 = 0. 

To find the distance, a radar system will transmit a discrete-time complex chirp pulse signal 𝑠[𝑛] as a 

continuous-time signal through its antenna. The radar then correlates the received signal against the 

chirp signal using the matched filter. Based on the time at which the peak in the absolute value of the 

response occurs, we estimate the round-trip delay to find the distance of the object using 

𝑑 =
1

2
 𝑐 𝑇𝑑 

(b) The matched filter is a linear time-invariant (LTI) finite impulse response (FIR) filter whose 

impulse response is directly related to the pulse shape to be detected, as mentioned in Section 2.3. For 

a discrete-time complex-valued pulse shape 𝑠[𝑛], the matched filter would have an impulse response 

ℎ[𝑛] = 𝐶 𝑠∗[𝑁 − 𝑛] 

where 𝑁 is a constant delay and 𝐶 is a non-zero gain.  For simplicity, we’ll use 𝑁 = 0 and 𝐶 = 1: 

ℎ[𝑛] = 𝑠∗[−𝑛] 

The relevant MATLAB commands are conj 

to conjugate the elements of the vector of 

signal values and fliplr to flip a vector of 

signal values. For a roundtrip delay of  

𝑇𝑑 = 0 seconds, the peak in the absolute 

value of the output of the matched filter 

occurs after the worst-case delay through 

the matched filter, which is the length of 

the filter of 500 samples.  The peak value is 

equal to 500. 

  

TW = 50; 

p = 10; 

sofn = dchirp(TW, p); 

h = conj(fliplr(sofn)); 

y = conv(h, sofn); 

N = length(y); 

n = 0 : N-1; 

figure; 

plot(n, abs(y)); 

xlabel('n'); 

 



(c) Correlation measures similarity between two signals, with a higher absolute value meaning a 

higher similarity. The correlation 𝑅𝑥𝑦[𝑘] between discrete-time signals 𝑥[𝑛] and 𝑦[𝑛] is defined as 

𝑅𝑥𝑦[𝑘] = ∑ 𝑥[𝑛] 𝑦∗[𝑛 + 𝑘]

∞

𝑛=−∞

 

The outer discrete-time variable 𝑘 indicates the shift in time between the two discrete-time signals. 

That is, correlation involves sliding 𝑦∗[𝑛 + 𝑘] across 𝑥[𝑛] and summing the result for each value of 

the shift, 𝑘. Correlation is very similar to convolution: 

𝑅𝑥𝑦[𝑘] = ∑ 𝑥[𝑛] 𝑦∗[𝑛 + 𝑘]

∞

𝑛=−∞

= ∑ 𝑥[𝑛] 𝑦∗[𝑘 + 𝑛]

∞

𝑛=−∞

 

In convolution, the 𝑦∗[𝑘 + 𝑛] term would be 𝑦∗[𝑘 − 𝑛]. Note that the roles of 𝑘 and 𝑛 are reversed in 

correlation. We can write correlation as 

𝑅𝑥𝑦[𝑘] = 𝑥[𝑛] ∗ 𝑦∗[−𝑛] 

That is, prior to convolution, we'll flip 𝑦∗[𝑛] and convolution will flip it back. That way, we'll "fool" 

convolution to perform sliding 𝑦∗[𝑛] across 𝑥[𝑛]. 

Autocorrelation of signal 𝑥[𝑛] measures how similar a signal 𝑥[𝑛] is vs. shifts in time of itself: 

𝑅𝑥𝑥[𝑘] = ∑ 𝑥[𝑛] 𝑥∗[𝑘 + 𝑛]

∞

𝑛=−∞

 

The maximum value for 𝑅𝑥𝑥[𝑘] occurs 

when 𝑘 = 0, i.e. when 𝑥[𝑛] is aligned 

with 𝑥∗[𝑛]. For a complex-valued signal 

𝑥[𝑛], the product 𝑥[𝑛] 𝑥∗[𝑛] is the 

magnitude squared of 𝑥[𝑛] because the 

phases subtract out. 

To verify our results, we use the xcorr 

function on MATLAB with one argument 

to perform the autocorrelation, and we 

plot its absolute value on the right. It is 

identical to the plot of the absolute value 

of the matched filter on the previous page. 

4.2 Range Estimation 

We estimate the range by estimating the round-trip time. We estimate the round-trip time by applying 

a matched filter to the received signal, picking the peak of the absolute value of the matched filter 

output, and subtracting the worst-delay of the matched filter from the time at which the peak occurred: 

𝑑 =
1

2
 𝑐 𝑇𝑑 

TW = 50; 

p = 10; 

sofn = dchirp(TW, p); 

y = xcorr(sofn); 

N = length(y); 

n = 0 : N-1; 

figure; 

plot(n, abs(y)); 

xlabel('n'); 

 



Because electromagnetic waves propagate in air at 

approximately the speed of light of 3 × 108 𝑚/𝑠, 

error in the round-trip time 𝑇𝑑 can lead to large 

errors in the range (distance) estimation for 𝑑. 

When the matched filtering is performed in 

discrete time, the accuracy in the time at which the 

peak occurred in the sampling time, 𝑇𝑠.  We can 

illustrate this by delaying the chirp signal by 
1

2
𝑇𝑠 .  

The top plot shows the area around the peak of the 

absolute value of the matched filter output for 

𝑇𝑑 =
1

2
𝑇𝑠 and the bottom plot shows the area for 

𝑇𝑑 = 0.  When 𝑇𝑑 = 0, a single peak occurs at 

index 499; however, for 𝑇𝑑 =
1

2
𝑇𝑠, two peaks 

occur at indices 499 and 500. The actual peak is at 

index 499.5, which is not on the integer grid.   

In addition to having round-trip delays that are not 

integer multiples of the sampling time, the 

estimate of the round-trip time is also affected by 

multipath effects.  That is, due to the wireless 

propagation along multiple paths from transmitter 

to receiver each with a different delay and gain, 

the absolute value of the matched filter output 

might have many peaks. 

We can use post-processing of the points at which the 

absolute value in the matched filter output clears a 

threshold to improve the accuracy of the round-trip 

time estimate.  For example, Exercise 2.3(d) in [8] 

suggests using a polynomial interpolator to obtain a 

high-resolution estimate of the round-trip time. 

 

5.0 Conclusion 

Wireless localization has applications in automotive, 

cellular, sonar, and ultrasound systems.  This project 

explored the use of radar signal processing to estimate 

the distance 𝑑 to an object by estimating the round-trip time 𝑇𝑑 and computing 𝑑 =
1

2
 𝑐 𝑇𝑑.  The 

accuracy in the distance depends heavily on the accuracy of the round-trip time. 

T = 25E-6; 

W = 2E6; 

fs = 20E6; 

p = fs / W; 

Ts = 1/fs; 

Td = 0.5*Ts; 

t = (-T/2) : Ts : (T/2); 

sdelayed = exp(j*pi*W*((t-Td).^2)/T); 

s = dchirp(T*W, p); 

h = conj(fliplr(s)); 

y = conv(h, sdelayed); 

N = length(y); 

n = 0 : N-1; 

figure; 

plot(n, abs(y)); 

xlabel('n'); 

ylabel('y[n] for Td = 0.5*Ts'); 

xlim([495 505]); 



This approach has two degrees of freedom: (1) pulse shape and (2) method to detect the pulse in the 

received signal.   

A chirp pulse linearly sweeps a range of frequencies over an interval of time.  A chirp is resilient to 

many impairments experienced by propagating signals including thermal noise, delays, frequency 

distortion, and Doppler shifts. [7] Chirp signals can be used not only to localize an object, but also 

estimate its velocity. [8] 

Matched filtering is employed to detect a known pulse by correlating the received signal with the known 

pulse and processing the points in the absolute value of the output that exceed a threshold to estimate 

the round-trip time 𝑇𝑑.  The simplest approach is to estimate 𝑇𝑑 is to find the time at which the first peak 

occurs and subtract the worst-case delay through the matched filter.  This method is limited in accuracy 

in the round-trip time by the sampling time and multipath effects.  Although not explored in this project, 

polynomial interpolators can be applied to the points in the absolute value of the output that exceed a 

threshold to obtain high-resolution round-trip time estimates. 
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Appendix A: Connections Between the Discrete-Time and Fast Fourier Transforms 

 

Discrete-Time Fourier Transform (DTFT). The Discrete-Time Fourier Transform 𝑋𝑓𝑟𝑒𝑞(𝜔) computes 

the frequency content in a discrete-time domain signal 𝑥[𝑛]: 

𝑋𝑓𝑟𝑒𝑞(𝜔) = ∑ 𝑥[𝑛] 𝑒−𝑗 𝜔 𝑛

∞

𝑛=−∞

 

An infinite number of coefficients could be needed to exactly represent x(t). 

Discrete-Time Fourier Series.  A discrete-time periodic signal x[n] with period N samples is composed 

of a constant term plus frequency components at integer multiples (harmonic) of a fundamental 

frequency of 2𝜋/𝑁 rad/sample which is equivalent to fs / N in Hz.  Fourier series analysis computes the 

constant term X[0] plus the magnitude and phase of each frequency term X[k] for k = 0, 1, …, N-1. 

 

 

 

A finite number of Fourier series coefficients would always be needed to exactly represent x[n]. 

Discrete Fourier Transform (DFT).  The Discrete Fourier Transform (DFT) applies the Discrete-

Time Fourier Series to a finite-length signal (or portion of a signal) to create a sampled version of the 

Discrete-Time Fourier Transform (DTFT): 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒−𝑗 (
2𝜋
𝑁

𝑘)𝑛 =

𝑁−1

𝑛=0

𝑋𝑓𝑟𝑒𝑞 (
2𝜋

𝑁
𝑘)   for 𝑘 = 0, 1, … , 𝑁 − 1 

The DFT samples in both time and frequency.  The DFT takes a vector of N discrete-time samples and 

produces a complex-valued vector of N frequency components. 

Fast Fourier Transform (FFT) is a fast algorithm to compute the N discrete-time Fourier transform 

coefficients X[k] from the N samples of a discrete-time signal x[n].  As with the continuous-time 

Fourier series, the discrete-time Fourier series assumes that the N samples of x[n] represents the 

fundamental period of an infinitely long signal in the time domain.  Unlike the continuous-time 

Fourier series, the discrete-time Fourier series always has a finite number of terms, N.  One of the 

reasons for this is due to the Sampling Theorem, which says that the sampling rate fs > 2 fmax where fmax 

is the highest frequency of interest and hence fmax < ½ fs.  Sampling only captures continuous-time 

frequencies (-½ fs, ½ fs) whereas continuous-time signals have frequencies.  You can think of the 

discrete-time Fourier series as computing the Fourier series coefficients for frequency components 

from -½ fs to -½ fs, which is a finite number because fs > 0. 

How fast is the FFT?  The FFT to compute X[k] above requires 2M log2 M real-valued multiplications 

and additions and 4M words of memory instead of the 4 M2 and M2 + 4M, respectively, for the direct 

matrix-vector implementation of the discrete-time Fourier series.  A direct matrix-vector multiplication 

to compute X[k] would create a complex-valued N x N matrix of the term exp(−𝑗 (2𝜋/𝑁) 𝑘𝑛) for k = 

0, 1, …, N-1 in one dimension and n = 0, 1, …, N-1 in the other, form a column vector of x[0], x[1], 

…, x[N-1], and multiply the matrix and vector to find the column vector of X[0], X[1], …, X[N-1]. 

  

where and 



Appendix B: Code for utplotspec.m 

 
function [ftValues, freqs] = utplotspec(x, Ts) 

%   UTPLOTSPEC  plot the magnitude and phase of the Fourier 

%               transform vs. frequency in Hz and return 

%               the frequency-domain samples computed and 

%               their corresponding frequency values 

%             

%   usage  [ftValues, freqs] = utplotspec(x, Ts) 

%          ftValues : Fourier transform values 

%          freqs : frequencies in Hz corresponding to spectrum vector 

%          x : discrete-time signal as a vector of samples 

%          Ts : time (in seconds) between adjacent samples in x 

  

% Based on plotspec(x, Ts) from Software Receiver Design 

% by R. Johnson, W. Sethares and A. Klein 

  

N = length(x);                     % length of the signal x 

freqResolution = 1/(N*Ts);         % frequency resolution fs/N 

  

fx = fft(x);                       % compute DFT/FFT 

fxs = fftshift(fx);                % shift it for plotting 

  

if floor(N/2) == N/2               % even 

    kstart = -N/2; 

    kend = (N/2) - 1; 

else                               % odd 

    kstart = -(N-1)/2; 

    kend = (N-1)/2; 

end 

kshift = kstart : kend;            % FFT indices for fftshift 

freqs = kshift * freqResolution;  % frequency vector 

  

subplot(2,1,1), plot(freqs, abs(fxs));    % plot mag spectrum 

xlabel('frequency (Hz)');                 % label axes 

ylabel('magnitude (linear units)');     

subplot(2,1,2), plot(freqs, unwrap(angle(fxs)));  % plot phase spectrum 

xlabel('frequency (Hz)');                 % label axes 

ylabel('phase (rad)'); 

  

ftValues = fxs; 

 


