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PROBLEM 1 

 

Prologue: This problem helps you to identify the points of interest in a sinusoidal signal and 

calculate the parameters of the waveform based on your observations. It relies on the definitions 

given in Sec. 2-3 of the Signal Processing First textbook. 

 

Solution: To calculate A, consider the peak-to-peak amplitude (Xpp) of the waveform which is the 

difference between the maximum value and the minimum value:  

 

Xpp = Maximum – Minimum =  4 – (–4) = 8.  So, A = Xpp /2 = 4. 

 

To estimate the frequency, we would first estimate the period and the invert of the period.  We 

could estimate a period in the plot by measuring the amount of time it takes to go from a peak to 

the next peak, or from one valley to the next.  The plot has valleys at three different instances: 

 t0 = -2.4 ms,  

 t1 = -0.9 ms,  

 t2 = 0.6 ms.   

One period has elapsed from t0 to t1 and two periods have elapsed from t0 to t2.  The period (T) is 

about 1.5 ms long. 

T = t1 – t0 = -0.9 - (-2.4) = -0.9 + 2.4 = 1.5ms OR T =  
𝑡2  – 𝑡0

2
=  

0.6−(−2.4)

2
 = 1.5ms. 

So, ω0 = 2π/T = 1333.33π = 4188.79 rad/s or f0 = 667 Hz.  (Ground truth is 660 Hz.) 

 

We are left with one unknown, φ.  We can pick any point in time to give us one equation in one 

unknown: x(t) = A cos(ω0 t + φ) 

● Approach #1:  If we pick t = 0, then x(0) = 4 cos(φ) ≈ 3.25 and  φ ≈ cos-1 (3.25/4) = 0.622 

rad (1) 

Recall that cos(-φ) = cos(φ), so φ could be +0.622 rad or -0.622 rad. Also, any addition of  φ and 

a multiple of 2π would also be a valid answer. 

To decide between the values, consider the slope at t = 0, which is negative. (2) 

x(t) = A cos(ω0 t + φ)   =>  x’(t) = -A ω0 sin(ω0 t + φ)   =>    x ’(0) = -A ω0 sin(φ) 

So, condition (2) implies that x’(0) < 0 => sin(φ) > 0. 

Out of the two values in (1), only φ = 0.198 = 0.622 rad satisfies the condition. 

 

● Approach #2.  Pick t = 0.6 ms where there is a valley.  Then, 

x(0.6ms) = 4 cos(2π(0.6ms/1.5ms) + φ) = -4   =>  cos(4π/5 + φ) = -1   => 

4π/5 + φ = 𝜋    =>   φ = π/5 = 0.6283 rad. 

Values used to 
generate the plot 

A = 4 
f0 = 660 Hz 

φ = /4  0.7854 rad 

Note: 660 Hz is a C 
in the 4th octave on 
Western scale. 
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Epilogue: There is nothing special about the time points considered for the solution. The points 

were chosen due to convenience, and the problem could have been done by taking other points as 

well. Additionally, the value of the phase φ is not unique. Using a ruler to measure points of interest 

will help give more accurate answers.   

 

PROBLEM 2 

 

Prologue: This problem helps you calculate the summation of several sinusoids having the same 

amplitude and frequency, but with different phases. By using the phasor addition rule, the answer 

can be derived. 

 

Part (a) 

𝑥(𝑡) = 120 cos(𝜔0𝑡) + 120 cos(𝜔0𝑡 + 30°) =  120 cos(𝜔0𝑡) + 120 cos(𝜔0𝑡 + 𝜋/6)  

Using the phasor addition rule from section 2-6.2 of the textbook: 

𝑅𝑒 {120𝑒𝑗𝜔0𝑡 + 120𝑒
𝑗(𝜔0𝑡+

𝜋
6

)} = 𝑅𝑒 {120𝑒𝑗𝜔0𝑡 + 120𝑒𝑗𝜔0𝑡𝑒
𝑗𝜋
6  }

= 𝑅𝑒 {120 (1 + 𝑒
𝑗𝜋
6 ) 𝑒𝑗𝜔0𝑡} = 𝑅𝑒{𝐴𝑒𝑗𝜙𝑒𝑗𝜔0𝑡} 

t = 0 
x (t) = 3.25 

t = 0.6 
x (t) = -4 
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Using Euler’s formula: 

)sin()cos( qqq je j +=  

120𝑒
𝑗𝜋
6 = 120 cos (

𝜋

6
) + 𝑗120𝑠𝑖𝑛 (

𝜋

6
) =  60√3 + 𝑗60 

Therefore: 

𝐴𝑒𝑗𝜙 =  120 (1 + 𝑒
𝑗𝜋
6 ) =  120 + 60√3 + 𝑗60 = 223.923 + 𝑗60 = 231.82𝑒𝑗0.262   

 

So, A = 231.82  & φ = 0.262 rad 

𝑥(𝑡) =  𝑅𝑒{231.82𝑒𝑗(𝜔0𝑡+0.262)} = 231.82cos (𝜔0𝑡 + 0.262) 

See the next page for the plot. 

 

Part (b) 

 

MATLAB Code: 
w0 = 120*pi; 
f0 = w0/(2*pi); %fundamental period in Hz 
fs = 40*f0;     %Sampling frequency in Hz 
Ts = 1/fs;      %Sampling time in seconds    
t = -0.05:Ts:0.05; 
x = 120*cos(w0*t)+120*cos(w0*t+pi/6); 
plot(t,x); 
xlabel('Time(s)'); 
ylabel('Amplitude'); 
figure; 
xParta = 231.82 * cos(w0*t + 0.262); 
plot(t, xParta); 

 

T0 is the fundamental period of x(t) 

ω0 =2π/T0 = 120π 

T0 = (2π)/(120π) = 1/60s = 0.0167s 

  

This range, e.g. –0.05 ≤ t ≤ 0.05, covers T1 = 0.05 – (-0.05) = 0.1s of the time scale 

m = T1 / T0 = 0.1 / 0.0167 = 6 , where m = 6 is the number of periods that are included in 

the plot. 

 

The two plots are identical!  See next page for the plot. 

 

Part (c) 

 

The answer is calculated in part a: 

 

𝑧(𝑡) =  231.82 cos (𝜔0𝑡 + 0.262) 
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Figure from Part (a) 

 

Figure from Part (b) 
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PROBLEM 3: 

 

Prologue: This problem shows that a time shift leads to a phase shift.  This principle is used in 

ranging systems that try to localize objects in an environment, such as ultrasound, sonar and radar.  

In those applications, the ranging system transmits a sinusoidal signal and then goes quiet.  The 

signal will bounce off an object in the environment and return to the ranging system.  The ranging 

system then computes the time delay between the transmitted and received signals to estimate the 

distance to the object by using the speed of propagation in the environment.  The ranging system 

can compute the time delay in the time domain or the phase delay in the frequency domain.  A 

common time domain method uses correlation, which is covered in EE 351K Probability and 

computed using convolution.  We’ll see convolution after midterm #1. 

 

Here’s the connection between time shift and phase shift: 

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓0𝑡 +  𝜙) = 𝐴 cos(2𝜋𝑓0(𝑡 − 𝑡1)) =  𝐴 cos(2𝜋𝑓0𝑡 −  2𝜋𝑓0𝑡1) 

 

Therefore, 𝜙 =  −2𝜋𝑓0𝑡1 =  −2𝜋𝑡1/𝑇0  
 

T0 = 8s 

 

Part (a) 

 

t1 = -2s 

Therefore, the phase is equal to: 

𝜙 =  −
2𝜋(−2)

8
=

𝜋

2
 

 True 

 

Part (b) 

t1 = 3s 

Therefore, the phase is equal to: 

𝜙 =  −
2𝜋(3)

8
= −

3𝜋

4
 

 False 

 

Part (c) 

t1 = 7s 

Therefore, the phase is equal to: 

𝜙 =  −
2𝜋(7)

8
= −

7𝜋

4
 

Due to property cos(x + 2 π) = cos(x). Each multiple of 2π corresponds to picking a different peak. 

 

𝜙 =  −
7𝜋

4
+ 2𝜋 =

𝜋

4
  

True 
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PROBLEM 4 

 

Prologue: This problem shows how wireless reception can vary with the location of the receiving 

equipment (e.g. smart phone).  In some locations, the receiving equipment will experience very 

weak reception, and strong reception in other locations. For the basic model of one reflector in this 

problem, the received amplitude strength is periodic with location on the horizontal axis.  A 

takeaway is that by moving the receiving equipment, e.g. walking while on a videocall on the smart 

phone will provide a good connection on average. 

 

Error in the textbook figure from the book errata 

 

 

Part (a) 

𝑡1 =
𝑑1

𝑐
;  𝑑1 = √𝑥2 + 𝑑𝑡

2 = √𝑥2 + 106 m  and 𝑐 = 3 × 108 m/s

𝑡1 =
√𝑥2 + 106

3 × 108
 s

𝑡2 =
𝑑2

𝑐
; 𝑑2 = √(𝑥 − 𝑑𝑟)2 + 𝑑𝑡

2 + 𝑑𝑟 = √(𝑥 − 55)2 + 106 + 55 m

𝑡2 =
√(𝑥 − 55)2 + 106 + 55

3 × 108
 s

 

Part (b) 

time delay at 𝑥 = 0m 

𝑡1  =
√106

3 × 108
= 3.3333 × 10−6 s

𝑡2  =
√(−55)2 + 106 + 55

3 × 108
= 3.5217 × 10−6 s

𝑠(𝑡)  = cos (300 × 106𝜋𝑡)

𝑟(𝑡)  = 𝑠(𝑡 − 𝑡1) + 𝑠(𝑡 − 𝑡2)

 = cos (300 × 106𝜋(𝑡 − 3.3333 × 10−6)) + cos (300 × 106𝜋(𝑡 − 3.5217 × 10−6)) 

 = cos (300 × (106𝜋𝑡 − 1000𝜋) + cos (300 × 106𝜋𝑡 − 1056.5𝜋)

 

http://dspfirst.gatech.edu/spfirst/SPFirst-errata.pdf
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Using the phasor addition rule: 

𝑅𝑒 {𝑒𝑗(300×106𝜋𝑡)𝑒𝑗(−1000𝜋) + 𝑒𝑗(300×106𝜋𝑡)𝑒𝑗(−1056.5𝜋)}

= 𝑅𝑒{𝑒𝑗(300×106𝜋𝑡)[𝑒𝑗(−1000𝜋) + 𝑒𝑗(−1056.5𝜋)]}

= 𝑅𝑒{𝐴𝑒𝑗𝜙𝑒𝑗𝜔0𝑡}

 

Using Euler's formula: 𝑒𝑗𝜃 = cos (𝜃) + 𝑗sin (𝜃) 

𝑒𝑗(−1000𝜋) = cos (−1000𝜋) + 𝑗sin (−1000𝜋) = 1 + 𝑗(0) = 1

𝑒𝑗(−1056.5𝜋)cos (−1056.5𝜋) + 𝑗sin (−1056.5𝜋)

= 0 + 𝑗(−1) = −1𝑗

 

𝜙 = tan−1 {
sin (−1000𝜋) + sin (−1056.5𝜋)

cos (−1000𝜋) + cos (−1056.5𝜋)
}

=
−𝜋

4

 

𝐴 =  √(1 + 0)2 + (0 + 1)2 = √2 

𝑓(𝑡) = √2cos (300 × 106𝜋𝑡 −
𝜋

4
) 

 

Part (c) 

𝑟(𝑡) = 𝑠(𝑡 − 𝑡1) + 𝑠(𝑡 − 𝑡2) 

= cos (300 × 106𝜋(𝑡 − 𝑡1)) + cos (300 × 106𝜋(𝑡 − 𝑡2)) 

𝐴

= √[cos (300 × 106𝜋𝑡1) + cos (300 × 106𝜋𝑡2)]2 + [(sin (300 × 106𝜋𝑡1) + sin (300 × 106𝜋𝑡2)]2 

when signal strength = 0 → 𝐴 = 0 

𝑚 = 300 × 106𝜋 

[cos (𝑚𝑡1) + cos (𝑚𝑡2)]2 + [sin (𝑚𝑡1) + sin (𝑚𝑡2)]2 = 0 

 

cos2(𝑚𝑡1) + cos2(𝑚𝑡2) + 2 cos(𝑚𝑡1) cos(𝑚𝑡2) + sin2(𝑚𝑡1) + sin2(𝑚𝑡2)
+ 2 sin(𝑚𝑡1) sin(𝑚𝑡2) =  0 

 

 cos2 (𝑥) + sin2 (𝑥) = 1  

 

2 + 2cos(𝑚𝑡1)cos (𝑚𝑡2) + 2sin(𝑚𝑡1)sin (𝑚𝑡2) = 0 

cos(𝑥 + 𝑦) = cos(𝑥) cos(𝑦) − sin(𝑥) sin (𝑦) 



The University of Texas at Austin     EE 313 Linear Systems & Signals – Fall 2021 

 

 
 

2 + 2cos (𝑚(𝑡1 − 𝑡2)) = 0. 

cos (300 × 106𝜋(𝑡1 − 𝑡2)) = −1 

since the denominator of 𝑡1 and 𝑡2 is equal to 3 × 108 

cos (𝜋√𝑥2 + 106 − 𝜋√(𝑥 − 55)2 + 106 + 55𝜋) = −1

cos (𝜋√𝑥2 + 106 − 𝜋√(𝑥 − 55)2 + 106) = 1

𝑥2 + 106 = (𝑥 − 55)2 + 𝑦6

𝑥2 = 𝑥2 + 552 − 110𝑥 → 110𝑥 = 552 → 𝑥 = 27.5 m

 

 

Part (d)  

 
x = -100:0.1:100; 

c = 3e8;               % speed of light in m/s 

dr = 55; 

dt = 1e6; 

w0 = 300*10^6*pi;      % carrier frequency (150 MHz) 
t1 = sqrt(x.*x+dt)/c; 
t2 = (sqrt((x.*x-2*dr*x+dr^2)+dt)+dr)/c;  % expanded sqrt((x-dr)^2 + dt) term 
s1 = cos(w0*t1)+cos(w0*t2); 
s2 = sin(w0*t1)+sin(w0*t2); 
a = sqrt(s1.*s1 + s2.*s2); 
plot(x, a); 
xlabel('Distance in meters'); 
ylabel('Amplitude Strength'); 

 


