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Solution Set for Homework #2 Version 2.0 

By Prof. Brian L. Evans and Mr. Firas Tabbara 

September 10, 2021 

PROBLEM 1 

Prologue: This problem asks to generate the signal in the time domain from the signal’s frequency domain 

representation (spectrum).  The spectral and time representations give complementary views into the signal.   

Problem:  The spectrum follows 

 

Solution: The spectrum indicates that the signal has frequency components of -8000 rad/s, -3000 rad/s, 

0 rad/s, 3000 rad/s and 8000 rad/s.  The strongest frequency component is at 0 rad/s because its magnitude (5) is 

the largest.  The second strongest frequency components are at -3000 rad/s and 3000 rad/s.  The weakest frequency 

components are at -8000 rad/s and 8000 rad/s.   

Part (a): We can read off the spectral components to create the time-domain representation of the signal 
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Part (b):  The signal x(t) is periodic with period T, if x(t + T) = x(t) for all values of t: 

𝑥(𝑡) = 5 + 5 cos (2𝜋(1500)𝑡 −
𝜋

6
) + 4 cos (2𝜋(4000)𝑡 +

𝜋

2
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𝑥(𝑡 + 𝑇) = 5 + 5 cos (3000𝜋𝑡 + 3000𝜋𝑇 −
𝜋

6
) + 4 cos (8000𝜋𝑡 + 8000𝜋𝑇 +
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2
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In order for x(t + T) = x(t) for all values of t, we can equate the first terms in x(t + T) and x(t), equate the second terms 

in x(t + T) and x(t), and equate the third terms in x(t + T) and x(t), and find values of T that work for all three terms. 

The first terms are already equal to each other (5).  The second terms are equal when 2π(1500)T = 2πk where k is an 

integer; i.e., when T is 1/1500, 2/1500, 3/1500, etc.  The third terms are equal when 2π(4000)T = 2πm where m is an 

integer, i.e. when T is 1/4000, 2/4000, 3/4000, 4/4000, 5/4000, 6/4000, 7/4000, 8/4000, etc.  The common values for 

the period T in seconds among all three terms are 1/500, 2/500, 3/500, 4/500, etc., which means that the fundamental 

period is 2 ms, and the fundamental frequency is 500 Hz.   

Alternately, the fundamental frequency could be found by computing the greatest common divisor (gcd) of 1500 Hz 

and 4000 Hz:  f0 = gcd (1500 Hz, 4000 Hz) = 500 Hz and T0 = 1/f0 = 1/(500 Hz) = 2 ms. 
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Part (c):  cos(ϴ) = Re{ejϴ}.  From the inverse Euler’s formula,  

cos(𝜃) =  
𝑒𝑗𝜃 + 𝑒−𝑗𝜃

2
 

Therefore, sinusoids should be shown by both frequencies. 

 

PROBLEM 2 

Prologue: This problem concerns amplitude modulation which is the basis for AM/FM radio, Wi-Fi, cellular, cable 

modems, and other communication systems. Amplitude modulation can also be used to create audio effects. 

 

Modulation Property. From this problem, you'll be able to derive a fundamental principle called the Modulation 

Property. It says that multiplying a signal 𝑣(𝑡) by cos(2𝜋 𝑓𝑐 𝑡) in the time domain will in the frequency domain shift 

the frequency content in 𝑣(𝑡) by fc and by -fc, as shown in the solution.  Modulation allows the conversion of an 

audio signal 𝑣(𝑡) into a wireless electromagnetic radio frequency (RF) signal centered at fc for long-range broadcast 

across the state and country, or a communication signal into the 2.4 GHz RF band for Wi-Fi. Example carrier 

frequencies: AM radio ~1 MHz, FM radio ~100 MHz, and Wi-Fi 2.4-2.499 GHz. (There are other Wi-Fi bands.) 

Audio signals have content between 20 Hz and 20 kHz, which are low frequencies compared to RF carrier 

frequencies. Audio signals don't propagate very far; e.g. sound from outdoor concert venues might propagate a few 

kilometers. By converting the audio signal to an AM radio signal, we can broadcast it for thousands of kilometers. 

 

Problem:  In AM radio, the transmitted signal (voice or music) is 

modulated by a sinusoid at the assigned broadcast frequency of the AM 

station.  For example, the Zone Austin Sports Talk in Austin has a 

carrier frequency fc of 1300 kHz.  For example, if x(t) is the voice/music 

signal, then the transmitted signal would be: 

 

where A is a constant.  (A is introduced to make the AM receiver design 

easier, in which case A must be chosen to be larger than the maximum 

value of v(t).)  Suppose that the signal that is to be transmitted is 

 

Draw the spectrum for y(t) assuming a carrier frequency of 1300 kHz 

with A = 2.  Hint: Substitute for x(t) and expand y(t) into a sum of cosine 

terms of three different frequencies. 

Solution: 
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PROBLEM 3 

Prologue: Chirp Signals. In a chirp signal, as mentioned in Section 3-8 of Signal Processing First, the principal 

frequency increases (or decreases) with time. 

Active sonar systems. The transmitter sends out a “ping” as sound in form of a chirp and then receives sound. The 

time elapsed between the transmission and reception of the chirp indicates the roundtrip time experienced by the 

signal after bouncing off an object in the water and returning to the receiver. By receiving sounds in different 

directions using multiple microphones, the sonar can build a map of the objects in the water.  

Bats use chirps for echolocation. Pipestrelle bats uses chirps that sweep down from 70 to 45 kHz. 

Test & Measurement. When one measures the response of a system to different frequencies, a time-consuming 

approach is to input a single sinusoid, measure the output, and repeat using many different frequencies. Instead, 

inputting a chirp can allow the measurement to performed in one take. 

4G/5G cellular communication systems periodically send a Zadoff-Chu chirp sequence to help measure the 

distortion in the electromagnetic propagation from transmitter to receiver. 

Prologue: Spectrograms.  For a periodic signal, Fourier series analysis tells us what frequencies are present and in 

what strengths. However, the analysis cannot tell us when in time a particular frequency occurs and at what strength.  

Consider the Fourier series analysis of a square wave on lecture slide 3-11 with a fundamental period of 40ms. Fourier 

series analysis says that the square wave contains a frequency at 25 Hz with a strength of −𝑗/𝜋. However, the square 

wave has an amplitude of 0 from 20ms to 40ms, and hence, no frequency components are present in this time interval. 

The Fourier series analysis computes the average strength of a frequency component over the fundamental period. 

A spectrogram can be used to analyze both periodic and non-periodic signals in the time and frequency domains 

simultaneously. The spectrogram indicates when in time a particular frequency occurs and at what strength.  

Problem:  This problem analyzes the chirp signal, which is used in sonar and radar systems, indoor positioning, test 

and measurement, and 4G cellular communications.  The chirp signal is a sinusoid whose principal frequency content 

increases (or decreases) over time.  A chirp signal has the form  

c(t) = cos( (t) )  where (t) = 2  ( f0 + ½ fstep t ) t = 2  f0 t +  fstep t2 

The principal frequency is f0 when t = 0 and then changes over time at a rate of fstep in units of Hz/s. The principal 

frequency of a sinusoid at a given point in time is called the instantaneous frequency, and it is defined as d(t) / dt in 

units of rad/s.  Here, d(t) / dt = 2  f0 + 2  fstep t = 2  (f0 + fstep t). 

Part (a):  MATLAB code to generate the chirp signal that lasts 10s with f0 = 20 Hz and fstep = 420 Hz/s.  Use 

sampling rate fs of 44100 Hz.  The chirp will sweep through the frequencies of the keys on an 88-key piano. 

 

Part (b):  The chirp signal can be played as an audio signal in MATLAB: 

 

 

The chirp linearly sweeps frequencies from 20 to 4220 Hz, and sounds like a note increasing in “pitch” over time. The 

sweep spans 8 octaves of A notes on a Western scale: 27.5, 55, 110, 220, 440, 880, 1760, and 3520 Hz.  

Part (c):  We can visualize the variation of the principal frequency over time by using a time-frequency representation. 

The time-frequency representation below is called a spectrogram. 

time = 10;      % length of time in seconds 
f0 = 20;        % specify starting principal frequency 
fstep = 420;    % specify frequency slope 
fs = 44100;     % sampling rate 
Ts = 1/fs;      % sampling time: time interval between samples 
t = 0 : Ts : time;  % create a time vector 
theta = 2*pi*(f0+0.5*fstep*t).*t; 
y = cos(theta);   % create chirp waveform 

 

sound(y, fs);         % play back chirp signal 

 

https://www.wildlife-sound.org/resources/equipment/2-uncategorised/233-recordings-of-ultrasonic-vocalisations-of-bats
https://en.wikipedia.org/wiki/Piano_key_frequencies
https://en.wikipedia.org/wiki/Piano_key_frequencies.
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The spectrogram for the chirp signal (next page) shows the principal frequency changing over time with a linear slope. 

The principal frequency is initially at 20 Hz and increases linearly to 4220 Hz. The principal frequency has the highest 

magnitude at every instant of time throughout the entire duration of the chirp signal, which is shown in yellow. 

As described on lecture slides 4-8 and 4-9, a spectrogram takes the first Nwin samples of the signal, weights the values 

(using a rectangular pulse by default), computes the Fourier series coefficients, and plots the magnitude of the Fourier 

series coefficients vertically. The spectrogram then shifts the time signal to the right and repeats the previous steps 

using a block of the next Nwin samples. The frequency resolution of the spectrogram is fs / Nwin.  

In the code below, a Hamming window is used to weight the values in each block of samples.   

 

 

Although not asked, we can increase the frequency resolution by increasing the block size: 

 

figure; 
spectrogram(y, hamming(256), 128, 256, fs, 'yaxis') 
ylim([0,5]); 

title('Spectrogram of the signal'); 

ylabel('Frequency(kHz)');  

xlabel('Time(s)'); 

 

figure; 
spectrogram(y, hamming(1024), 512, 1024, fs, 'yaxis') 
ylim([0,5]); 

title('Spectrogram of the signal'); 

ylabel('Frequency(kHz)');  

xlabel('Time(s)'); 
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PROBLEM 4 

Prologue: This problem explores various audio effects by applying nonlinear operations to a sinusoidal signal.  It 

also explores what happens to the frequency component of a sinusoidal signal due to nonlinear operations. This is a 

common approach in analyzing how a nonlinear system (e.g. a diode or transistor) responds to different frequencies. 

Among the nonlinear operations, parts (a), (b) and (c) can be used in amplitude demodulation (see the Prologue for 

Problem 2). The nonlinear operation in part (d) is a type of frequency modulation. 

Problem: Consider the signal x(t) = cos(2  f0 t) where f0 = 440 Hz which an ‘A’ note on the Western scale. 

Write MATLAB code to implement the following audio effects.  Play each audio signal over 0  t  5 and use a sampling 

rate of 8000 Hz: 

(a) y(t) = | x(t) | 

(b) y(t) = x2(t) 

(c) y(t) = x4(t) 

(d) y(t) = cos( x(t)) 

For each part, give a mathematical analysis to determine what frequencies are present in y(t) and play y(t) as an audio 

signal and describe what you hear vs. x(t). 

Solution:  MATLAB code for generating and playing x(t) and output signals for parts (a)-(d): 

 

f0 = 440; 
fs = 8000; 
Ts = 1/fs; 
t = 0:Ts:5; 
x = cos(2*pi*f0*t); 
y_a = abs(x); 
y_b = x.^2; 
y_c = x.^4; 
y_d = cos(pi*x); 

 

figure(1) 

spectrogram(x, hamming(256), 128, 256, fs, 'yaxis') 
sound(x,fs) 
pause(8); 
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x(t) only contains the frequencies ±440 Hz, and the spectrogram shows this.  

Note: We’re sampling a continuous-time signal at a sampling rate of fs = 8000 Hz. From the sampling theorem, 

fs > 2 fmax or by dividing each side by 2, fmax < (1/2) fs. By sampling, we can only capture continuous-time 

frequencies up to (1/2) fs, or 4000 Hz. We won't be able to see harmonics at or above 4000 Hz in the spectrogram. 

Part (a):  The fundamental period of y(t) is half that of x(t). 

Here are plots of four/eight fundamental periods of x(t)/y(t): 

In order to be periodic, y(t) = y(t+T0) and T0 is the fundamental 

period in seconds where T0 = 1/880 in seconds. 
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figure(2) 

spectrogram(y_a, hamming(256), 128, 256, fs, 'yaxis') 

soundsc(y_a,fs) 
pause(8); 

 

figure(3) 

spectrogram(y_b, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_b,fs) 
pause(8); 

 

figure(4) 

spectrogram(y_c, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_c,fs) 
pause(8); 

 

figure(5) 

spectrogram(y_d, hamming(256), 128, 256, fs, 'yaxis') 
soundsc(y_d,fs) 

 

 

t 

cos(2 (440Hz) t) 

| cos(2 (440Hz) t) | 
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So, y(t) contains an infinite number of even harmonics of 440 Hz, which correspond to frequencies of ±880k where 

k is an integer value.  As expected, we can hear a higher frequency sound. The sound feels richer as several 

harmonics are present (less ‘thin’ than a pure cosine). The Sampling Theorem says to choose the sampling rate so 

that fs > 2 fmax and hence fmax < ½ fs.  Sampling at 8 kHz will only capture harmonic frequencies below 4 kHz. 

 

Part (b): 

                        𝑦(𝑡) = cos2(2𝜋440𝑡) 

                        𝑦(𝑡) =
1

2
+

1

2
cos (2𝜋880𝑡) 

         (Using the trig. identity cos(2θ) = 2cos2(θ) -1) 

y(t) contains 0 Hz and ±880 Hz, which are even harmonics of 440 Hz up to the 2nd harmonic. Alternatively, 

                        𝑦(𝑡) = cos2(2𝜋440𝑡) 

                        𝑦(𝑡) = (𝑒𝑗2𝜋440𝑡 + 𝑒−𝑗2𝜋440𝑡)2/4  

                                 =
𝑒𝑗2𝜋880𝑡 +  𝑒−𝑗2𝜋880𝑡 + 2

4
=

1

2
+

cos(2𝜋880𝑡)

2
 

And 
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        (Using the binomial expansion for (a+b)2 = a2+b2+2ab) 

It sounds ‘thin’, which is because just one frequency is audible in the waveform, while in part (a), many harmonics 

could be also heard. 

 
Part (c): 

y(t) = x4(t) = cos4(2p f
0
t) = (

e
j2p f

0
t
+ e

- j2p f
0
t

2
)4 =

e
j8p f

0
t
+ e

- j8p f
0
t
+ 4e

j4p f
0
t
+ 4e

- j4p f
0
t
+6

16

= 0.375+0.5cos(4p f
0
t)+0.125cos(8p f

0
t) = 0.375+0.5cos(2p (880)t)+0.125cos(2p (1760)t)

 
(Using the binomial expansion for (a + b)4  =  a4 + b4 + 4 a3 b + 4 a b3 +6a2b2 ) 

So, y(t) contains the frequencies 0 Hz, ±880Hz and ±1760Hz, which are the second and fourth harmonics of 440 Hz. 

This sounds as if it has a frequency between the signals in parts (a) & (b). The sound is more ‘thin’ than part (a), 

while it is not pure as audio in part b, and the second harmonic frequency of 880 Hz (i.e. ±1760Hz) can be heard. 
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Part (d):  Using Taylor series expansion: 
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0
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2 4 6 8

0 0 0 0
0

(cos(2 )) (cos(2 )) (cos(2 )) (cos(2 ))
cos( cos(2 )) 1

2! 4! 6! 8!

f t f t f t f t
f t

   
         

As shown in the above formula, y(t) includes (cos (π cos(2πf0t))2, and as shown in part (b) and (c), y(t) = cosn(2 pi 

f0 t) will have odd harmonics up to the nth harmonic if n is odd, and even harmonics up to the nth harmonic if n is 

even including a zero-frequency component. 

Compared to parts (b) and (c), the audio signal has additional harmonics. 

 

Epilogue:  Harmonics of a fundamental frequency give the note at the fundamental frequency a richer sound.  When 

instruments play a note, the instrument creates harmonics, and the harmonics generated can help one identify which 

instrument it is. 

 

From analyzing cos2(2  f0 t) and cos4(2  f0 t), we can infer that cosn(2  f0 t) has even harmonics of f0 up to the nth 

harmonic as well as a DC term when n is even.  When n is odd, we can start with cos3(2  f0 t) which has frequencies 

-3 f0, - f0, - f0 and 3 f0 from lecture slide 3-9.  More generally, cosn(2  f0 t) will have odd harmonics of f0 up to the 

nth harmonic if n is odd, and even harmonics of f0 up to the nth harmonic plus an DC term if n is even 

 

 


