Solution Set for Homework \#3 on Fourier Series and Sampling

By Prof. Brian L. Evans and Mr. Firas Tabbara
September 25, 2021

PROBLEM 1: FOURIER ANALYSIS AND SYNTHESIS

Prologue: The purpose of this problem is to use properties of the continuous-time Fourier series in computing the Fourier series coefficients. Throughout the remainder of the course, we'll be using properties of continuous-time Fourier transforms and other transforms to simplify the computation of the transform.

Problem: Signal Processing First, problem P-3.14, page 67. The problem gives an example of a signal $x(t)$ that has period T_{0} and another signal $y(t)=\frac{d}{d t} x(t)$. The Fourier series coefficients b_{k} for $y(t)$ can be computed from the Fourier series coefficients a_{k} for $x(t)$ using $b_{k}=\left(j k \omega_{0}\right) a_{k}$ where $\omega_{0}=2 \pi f_{0}$.

Solution for part (a): Here are two different solutions for $y(t)=A x(t)$.

Solution \#1 for part (a)

$$
x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}
$$

$$
\text { Let } y(t)=A x(t):
$$

$$
y(t)=A\left(\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}\right)
$$

$$
y(t)=\sum_{k=-\infty}^{+\infty} A a_{k} e^{j k \omega_{0} t}
$$

$$
y(t)=\sum_{k=-\infty}^{+\infty}\left(A a_{k}\right) e^{j k \omega_{0} t}
$$

$$
y(t)=\sum_{k=-\infty}^{+\infty} b_{k} e^{j k \omega_{0} t}
$$

$$
b_{k}=A a_{k}
$$

Solution \#2 for part (a)
$a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t$
$b_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) e^{-j k \omega_{0} t} d t$
Let $y(t)=A x(t):$
$b_{k}=\int_{0}^{T_{0}} A x(t) e^{-j k \omega_{0} t} d t$
$b_{k}=A \int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t$
$b_{k}=A a_{k}$

Solution for part (b): Here are two different solutions for $y(t)=A x\left(t-t_{d}\right)$.

Solution \#1 for part (b)

Let $y(t)=x\left(t-t_{d}\right):$
$x\left(t-t_{d}\right)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0}\left(t-t_{d}\right)}$
$x\left(t-t_{d}\right)=\sum_{k=-\infty}^{+\infty} a_{k} e^{-j k \omega_{0} t_{d}} e^{j k \omega_{0} t}$
$y(t)=\sum_{k=-\infty}^{+\infty} b_{k} e^{j k \omega_{0} t}$
$b_{k}=e^{-j k \omega_{0} t_{d}} a_{k}$

$$
\begin{aligned}
& x\left(t-t_{d}\right)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0}\left(t-t_{d}\right)} \\
& x\left(t-t_{d}\right)=\sum_{k=-\infty}^{+\infty} a_{k} e^{-j k \omega_{0} t_{d}} e^{j k \omega_{0} t} \\
& y(t)=\sum_{k=-\infty}^{+\infty} b_{k} e^{j k \omega_{0} t} \\
& b_{k}=e^{-j k \omega_{0} t_{d}} a_{k}
\end{aligned}
$$

Solution \#2 for part (b)

$$
\begin{aligned}
& \qquad \begin{aligned}
a_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t \\
b_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) e^{-j k \omega_{0} t} d t \\
\text { Let } y(t) & =x\left(t-t_{d}\right): \\
b_{k} & =\int_{0}^{T_{0}} x\left(t-t_{d}\right) e^{-j k \omega_{0} t} d t
\end{aligned}
\end{aligned}
$$

Using a substitution of variables with $\lambda=t-t_{d}$ and $d \lambda=d t$. The limits of integration $t \rightarrow 0$ becomes $\lambda \rightarrow-t_{d}$ and $t \rightarrow T_{0}$ becomes $\lambda \rightarrow T_{0}-t_{d}$,

$$
b_{k}=\int_{0}^{T_{0}} x(\lambda) e^{-j k \omega_{0}\left(\lambda+t_{d}\right)} d t
$$

$$
b_{k}=\int_{-t_{d}}^{T_{0}-t_{d}} x(\lambda) e^{-j k \omega_{0} t_{d}} e^{-j k \omega_{0} \lambda} d \lambda
$$

$$
b_{k}=e^{-j k \omega_{0} t_{d}} \int_{-t_{d}}^{T_{0}-t_{d}} x(\lambda) e^{-j k \omega_{0} \lambda} d \lambda
$$

$$
b_{k}=e^{-j k \omega_{0} t_{d}} a_{k}
$$

When delaying a signal, the Fourier Series coefficients are multiplied by $e^{-j k \omega_{0} t_{d}}$. This is another example of a shift in time causing shift in phase.
(c) $y(t)=2 x\left(t-\frac{1}{4} T_{0}\right)$

Using the conclusion derived in parts (a) and (b) with $A=2$ and $t_{d}=1 / 4 T_{0}$,

$$
b_{k}=2 e^{-j k \omega_{0}\left(\frac{1}{4} T_{0}\right)} a_{k}
$$

Given $\omega_{0}=2 \pi f_{0}=\frac{2 \pi}{T_{0}}$,

$$
b_{k}=2 e^{-j k \frac{\pi}{2}} a_{k}
$$

(d) Below, the plots of $x(t)$ and $y(t)$ are plotted for two periods to better show the shift in time $y(t)=2 x\left(t-\frac{1}{4} T_{0}\right)$. Note the doubling in amplitude for $y(t)$.

```
% Fourier synthesis for square wave
% Prof. Brian L. Evans
% The University of Texas at Austin
% Written in Fall }201
% Version 2.0
%
% Fourier series coefficients ak for a square
% wave with period T0 that is
% 1 for 0 <= t < T0/2
% 0 for T0/2 <= t < T0
%
% Derivation is in Sec. 3-6.1 in Signal
% Processing First (2003) on pages 52-53
% Pick a value for the period of x(t)
TO = 1;
f0 = 1 / TO;
% Pick number of terms for Fourier synthesis
N = 10;
fmax = N * f0;
% Define a sampling rate for plotting
fs = 24 * fmax;
Ts = 1 / fs;
% Define samples in time for one period
%t = -0.5*T0 : Ts : 0.5*T0;
t = -T0 : Ts : T0;
% First Fourier synthesis term
a0 = 0.5;
b0 = 2*a0;
x = a0 * ones(1, length(t));
y = b0 * ones(1, length(t));
figure;
plot(t, y);
ylabel('Square Wave Delayed by T0/4 and scaled by 2')
hold on;
% Generate each pair of synthesis terms
for k = 1 : N
    % Define Fourier coefficients at k and -k
    akpos = (1 - (-1)^k) / (j*2*pi*k);
    akneg = (1 - (-1)^(-k)) / (j*2*pi* (-k));
    bkpos = 2*(exp (-j*2*pi*k* (1/4)*T0))*akpos;
    bkneg = 2* (exp (-j*2*pi*(-k)* (1/4)*T0))*akneg;
    theta = j*2*pi*k*f0*t;
    x = x + akpos * exp(theta) + akneg * exp(-theta);
    y = y + bkpos * exp(theta) + bkneg * exp(-theta);
    % Plot Fourier synthesis for indices -k ... k
    plot(t, y);
    pause(0.5);
end
hold off;
figure;
plot(t, x);
ylabel('Original Square Wave')
```


PROBLEM 2: SAMPLING

Prolog: Periodicity is a bit different for discrete-time signals than continuous-time signals because the discrete-time domain is on an integer grid whereas the continuous-time domain is on a real number line.

Problem: Signal Processing First, problem P-4.2, page 96, with an additional part (d).

$$
x(t)=7 \sin (11 \pi t)=7 \cos \left(11 \pi t-\frac{\pi}{2}\right)
$$

In the continuous-time domain, the fundamental period is $(2 / 11)$ seconds:

$$
\begin{gathered}
\omega_{0}=11 \pi \frac{\mathrm{rad}}{\mathrm{~s}} \\
f_{0}=\frac{11 \pi}{2 \pi}=5.5 \mathrm{~Hz} \\
T_{0}=\frac{2}{11} \mathrm{~s} \\
\emptyset=-\frac{\pi}{2} \mathrm{rad}
\end{gathered}
$$

(a) $\widehat{w}_{0}=2 \pi \frac{f_{0}}{f_{s}}=2 \pi \frac{5.5 \mathrm{~Hz}}{10 \mathrm{~Hz}}=\frac{11}{10} \pi \frac{\mathrm{rad}}{\text { sample }}$

Due to sampling at $f_{\mathrm{s}}=10 \mathrm{~Hz}, x[n]=x\left(n T_{s}\right)=x\left(\frac{n}{f_{s}}\right)$:

$$
\begin{aligned}
x[n] & =7 \cos \left(\frac{11 \pi}{10} n-\frac{\pi}{2}\right) \\
& =7 \cos \left(\frac{11 \pi}{10} n-2 \pi n-\frac{\pi}{2}\right) \\
& =7 \cos \left(-\frac{9 \pi}{10} n-\frac{\pi}{2}\right) \\
& =7 \cos \left(\frac{9 \pi}{10} n+\frac{\pi}{2}\right)
\end{aligned}
$$

$\mathrm{A}=7, \varphi=\frac{\pi}{2} \mathrm{rad}$
(b) $\widehat{w}_{0}=2 \pi \frac{5.5 \mathrm{~Hz}}{5 \mathrm{~Hz}}=\frac{11}{5} \pi \frac{\mathrm{rad}}{\text { sample }}$

Due to sampling at $f_{\mathrm{s}}=5 \mathrm{~Hz}, x[n]=x\left(n T_{s}\right)=x\left(\frac{n}{f_{s}}\right)$:

$$
x[n]=7 \cos \left(\frac{11 \pi}{5} n-\frac{\pi}{2}\right)
$$

This signal is undersampled, because $f_{0}>f_{s} / 2$. The following equation shows the effect of aliasing (but not related to folding) caused by the undersampling:

$$
x[n]=7 \cos \left(\frac{11 \pi}{5} n-\frac{\pi}{2}\right)=7 \cos \left(\frac{11 \pi}{5} n-2 \pi n-\frac{\pi}{2}\right)=7 \cos \left(\frac{\pi}{5} n-\frac{\pi}{2}\right)
$$

$\mathrm{A}=7, \varphi=-\frac{\pi}{2} \mathrm{rad}$
(c) $\widehat{w}_{0}=2 \pi \frac{5.5 \mathrm{~Hz}}{15 \mathrm{~Hz}}=\frac{11}{15} \pi \frac{\mathrm{rad}}{\text { sample }}$

This signal is $15 / 11$ times oversampled because $f_{0}<f_{\mathrm{s}} / 2$

$$
x[n]=7 \cos \left(\frac{11 \pi}{15} n-\frac{\pi}{2}\right)
$$

$$
\mathrm{A}=7, \varphi=-\frac{\pi}{2} \mathrm{rad}
$$

(d) As shown at the beginning of this problem's solution:

$$
f_{0}=\frac{11 \pi}{2 \pi}=5.5 \mathrm{~Hz} \text { and } T_{0}=\frac{2}{11} s
$$

According to the hint that is provided for this solution, which comes from Handout D on Discrete-Time Periodicity, $x[n]$ is periodic with a discrete-time period of N_{0} samples if $x[n]=x\left[n+N_{0}\right]$ for all possible integer values of N_{0}.

$$
\begin{aligned}
x\left[n+N_{0}\right] & =7 \cos \left(\frac{11 \pi}{15}\left(n+N_{0}\right)-\frac{\pi}{2}\right) \\
& =7 \cos \left(2 \pi \frac{11}{30} n+2 \pi \frac{11}{30} N_{0}-\frac{\pi}{2}\right) \\
& =7 \cos \left(2 \pi \frac{11}{30} n-\frac{\pi}{2}\right)
\end{aligned}
$$

Because 11 and 30 are relatively prime, the smallest possible positive integer for N_{0} is 30 samples. Therefore, the fundamental period of $x[n]$ is 30 samples. Those 30 samples contain 11 continuous-time periods, which corresponds to 2.67 samples in each continuous-time period.
Although not required, here's a way to visualize differences in periodicity by superimposing plots of $x(t)$ and $x[n]$. In $x[n]$, the amplitude of 1 at $n=0$ does not repeat until $n=30$.

```
fs = 15;
TS = 1/fs;
wHat = 2*pi*f0/fs;
NO = 30;
n = 0 : NO;
yofn = cos(wHat*n);
t = 0 : 0.01 : N0;
yoft = cos(wHat*t);
figure;
stem(n, yofn);
hold;
plot(t, yoft);
```


Epilogue: For a sinusoidal signal with discrete-time frequency $\widehat{\omega}_{0}=2 \pi \frac{f_{0}}{f_{s}}=2 \pi \frac{N}{L}$ where the common factors in f_{0} and f_{s} have been removed so that N and L are relatively prime, the discrete-time signal has a fundamental period of L samples. The fundamental period of L samples contains N periods of a continuous-time sinusoid with frequency f_{0}. Please see Handout D on Discrete-Time Periodicity.

