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PROBLEM 1: DISCRETE-TIME AVERAGING FILTERS.  34 points. 

For a discrete-time LTI system with input signal 𝑥[𝑛] and impulse response ℎ[𝑛], the output 

signal 𝑦[𝑛] is the convolution of ℎ[𝑛] and 𝑥[𝑛]: 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = ∑ ℎ[𝑘] 𝑥[𝑛 − 𝑘]

∞

𝑘=−∞

 

(a) Compute the output 𝑦[𝑛] when the input 𝑥[𝑛] is a rectangular pulse of amplitude 1 for 𝑛 =
0, 1, …𝑁𝑥 − 1 and amplitude 0 otherwise, and 𝑥[𝑛] is filtered by an LTI unnormalized averaging 

filter whose impulse response ℎ[𝑛] is a rectangular pulse of amplitude 1 for 𝑛 = 0, 1,…𝑁ℎ − 1 

and amplitude 0 otherwise.  Assume 𝑁𝑥 ≠ 𝑁ℎ. 

i. Write the difference equation relating output 𝑦[𝑛] and input 𝑥[𝑛].  3 points. 

Solution: The impulse response 𝒉[𝒏] has extent 𝒏 = 𝟎, 𝟏, …𝑵𝒉 − 𝟏: 

𝒚[𝒏] = 𝒉[𝒏] ∗ 𝒙[𝒏] = ∑ 𝒉[𝒌] 𝒙[𝒏 − 𝒌]

∞

𝒌=−∞

= ∑ 𝒉[𝒌] 𝒙[𝒏 − 𝒌]

𝑵𝒉−𝟏

𝒌=𝟎

 

𝒚[𝒏] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + ⋯ +  𝒉[𝑵𝒉 − 𝟏] 𝒙[𝒏 − (𝑵𝒉 − 𝟏)] 

Since 𝒉[𝒏] = 𝟏 for 𝒏 =  𝟎, 𝟏, … ,𝑵𝒉 − 𝟏, 

𝒚[𝒏] = 𝒙[𝒏] + 𝒙[𝒏 − 𝟏] + 𝒙[𝒏 − 𝟐] + ⋯+ 𝒙[𝒏 − (𝑵𝒉 − 𝟏)] 

ii. What are the initial conditions and what values should they be set to?  3 points. 

Solution: Initial conditions can be discovered by computing the first several values 

of 𝒚[𝒏] for n ≥ 0:  𝒚[𝟎] = 𝒙[𝟎] + 𝒙[−𝟏] + 𝒙[−𝟐] + ⋯+ 𝒙[−(𝑵𝒉 − 𝟏)]. 

The initial conditions are 𝒙[−𝟏], 𝒙[−𝟐],… , 𝒙[−(𝑵𝒉 − 𝟏)]. They must be set to zero 

as necessary conditions for LTI system properties to hold. 

iii. Develop a formula for 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] using the convolution definition in terms of 

𝑁𝑥  and 𝑁ℎ.  Show the intermediate steps in computing the convolution.  6 points. 

Solution:  First, we’ll define 𝑵𝒎𝒊𝒏 = 𝐦𝐢𝐧(𝑵𝒉, 𝑵𝒙) and 𝑵𝒎𝒂𝒙 = 𝐦𝐚𝐱(𝑵𝒉, 𝑵𝒙) and the 

length of the convolution result 𝑵𝒚 = 𝑵𝒉 + 𝑵𝒙 − 𝟏.  As we flip and slide 𝒙[𝒏 − 𝒌] 

across 𝒉[𝒌], where the shift n is with respect to the convolution variable k, the extent 

of 𝒉[𝒌] is 𝟎 ≤ 𝒌 ≤ 𝑵𝒉 − 𝟏 and the extent of 𝒙[𝒏 − 𝒌] is 𝒏 − (𝑵𝒙 − 𝟏) ≤ 𝒌 ≤ 𝒏. 
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There are five cases to consider: 

1. No overlap.  𝒏 < 𝟎.  Amplitude is 0. 

2. Partial overlap.  𝟎 ≤ 𝒏 ≤ 𝑵𝒎𝒊𝒏 − 𝟏.  Amplitude is (𝒏 + 𝟏). 

Initial overlap of one sample at 𝒏 = 𝟎 with a product of one.  Each shift by one 

in n adds one more overlapping sample with product of one. 

𝒚[𝒏] = ∑ 𝒉[𝒌] 𝒙[𝒏 − 𝒌]

𝒏

𝒌=𝟎

= ∑ 𝟏

𝒏

𝒌=𝟎

= (𝒏 + 𝟏) 

3. Complete overlap.  𝑵𝒎𝒊𝒏 − 𝟏 ≤ 𝒏 ≤ 𝑵𝒎𝒂𝒙 − 𝟏.  Amplitude is 𝑵𝒎𝒊𝒏.   

Here, 𝑵𝒎𝒊𝒏 samples overlap, and each sample has a value of one. 

4. Partial overlap.  𝑵𝒎𝒂𝒙 ≤ 𝒏 ≤ 𝑵𝒚 −1.  Amplitude is 𝑵𝒚 − 𝒏.   

Amplitude reduces by one each time n is incremented. 

𝒚[𝒏] = ∑ 𝟏

𝑵𝒉−𝟏

𝒌=𝒏−(𝑵𝒙−𝟏)

= (𝑵𝒉 − 𝟏) + (𝑵𝒙 − 𝟏) + 𝟏 − 𝒏 = 𝑵𝒚 − 𝒏 

5. No overlap.  𝒏 ≥ 𝑵𝒚.  Amplitude is 0. 

iv. Validate the formula for 𝑦[𝑛] by using Matlab to compute the convolution for 𝑁𝑥 =
9 samples and 𝑁ℎ = 4 samples.  3 points. 

Solution: Using Matlab: 
h = ones(1, 4); 

x = ones(1, 9); 

y = conv(h, x); 

n = 0 : 11; 

stem(n, y); 

xlim([-0.2 11.2]); 

ylim([-0.2, 4.2]); 

xlabel('n'); 

ylabel('y[n]'); 

v. Use the z-transform to find 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛].  Track region of convergence.  3 points. 

Solution:  Convolution in the discrete-time domain becomes a product in the z-

transform domain: 𝒀(𝒛) = 𝑯(𝒛)𝑿(𝒛).  Here, 

𝑯(𝒛) = ∑ 𝒉[𝒏] 𝒛−𝒏 = 𝟏 + 𝒛−𝟏 + 𝒛−𝟐 + ⋯+

𝑵𝒉−𝟏

𝒏=𝟎

𝒛−(𝑵𝒉−𝟏) 𝐢𝐟 𝒛 ≠ 𝟎 

𝑿(𝒛) = ∑ 𝒙[𝒏] 𝒛−𝒏 = 𝟏 + 𝒛−𝟏 + 𝒛−𝟐 + ⋯+

𝑵𝒙−𝟏

𝒏=𝟎

𝒛−(𝑵𝒙−𝟏) 𝐢𝐟 𝒛 ≠ 𝟎 

Convolution in the time domain has become polynomial multiplication in the z-

transform domain.  The polynomial multiplication will produce a polynomial whose 

coefficients will fit a trapezoidal pattern because 𝑵𝒙 ≠ 𝑵𝒉. 

𝑿(𝒛) = 𝟏 + 𝟐 𝒛−𝟏 + 𝟑 𝒛−𝟐 + ⋯+ 𝟐 𝒛−(𝑵𝒚−𝟐) + 𝒛−(𝑵𝒚−𝟏) 𝐢𝐟 𝒛 ≠ 𝟎 
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(a) An LTI system outputs the weighted average of the previous output value 𝑦[𝑛 − 1] and 

current input value 𝑥[𝑛] using difference equation 𝑦[𝑛] = 0.9 𝑦[𝑛 − 1] + 0.1 𝑥[𝑛] for 𝑛 ≥ 0 

i. What are the initial conditions and what value should they be set to?  3 points. 

Solution: Initial conditions can be discovered by computing the first values of 𝒚[𝒏] for 

n ≥ 0:  𝒚[𝟎] = 𝟎. 𝟗 𝒚[−𝟏] + 𝟎. 𝟏 𝒙[𝟎].  Initial condition 𝒚[−𝟏] = 𝟎 for LTI to hold. 

ii. Compute a formula for the impulse response ℎ[𝑛] for the system.  3 points. 

Solution:  To compute the impulse response 𝒉[𝒏], we let the input be an impulse 𝜹[𝒏]: 
𝒉[𝒏] = 𝟎. 𝟗 𝒉[𝒏 − 𝟏] + 𝟎. 𝟏 𝜹[𝒏] for n ≥ 0 with 𝒉[−𝟏] = 𝟎. We’ll compute the output 

values and infer the impulse response as in LTI Example #2 on Lecture Slide 11-4: 

𝒉[𝟎] = 𝟎. 𝟗 𝒉[−𝟏] + 𝟎. 𝟏 𝜹[𝟎] = 𝟎. 𝟏 

𝒉[𝟏] = 𝟎. 𝟗 𝒉[𝟎] + 𝟎. 𝟏 𝜹[𝟏] =  𝟎. 𝟏 (𝟎. 𝟗) 

𝒉[𝟐] = 𝟎. 𝟗 𝒉[𝟏] =  𝟎. 𝟏 (𝟎. 𝟗)𝟐 … 

Inferring the pattern gives 𝒉[𝒏] = 𝟎. 𝟏 (𝟎. 𝟗)𝒏 𝒖[𝒏]. 

iii. Develop a formula for 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] using the convolution definition when the 

input signal is 𝑥[𝑛] = 0.8𝑛 𝑢[𝑛].  6 points. 

Solution: With 𝒉[𝒏] = 𝟎. 𝟏 (𝟎. 𝟗)𝒏 𝒖[𝒏] and 𝒙[𝒏] = 𝟎. 𝟖𝒏 𝒖[𝒏]. 

𝒚[𝒏] = ∑ 𝒉[𝒌] 𝒙[𝒏 − 𝒌]

∞

𝒌=−∞

= ∑ (𝟎.𝟏 (𝟎. 𝟗)𝒌 𝒖[𝒌]) 

∞

𝒌=−∞

((𝟎. 𝟖)𝒏−𝒌 𝒖[𝒏 − 𝒌]) 

𝒖[𝒌] is 1 for 𝒌 ≥ 𝟎 and 0 otherwise.  𝒖[𝒏 − 𝒌] is 1 when 𝒏 − 𝒌 ≥ 𝟎 or 𝒌 ≤ 𝒏, and 0 

otherwise.  Limits of summation become 𝒌 = 𝟎 and 𝒌 = 𝒏 and 𝒏 ≥ 𝟎 because 𝒌 ≥ 𝟎: 

𝒚[𝒏] = 𝒖[𝒏]∑ 𝟎. 𝟏 (𝟎. 𝟗)𝒌 

𝒏

𝒌=𝟎

(𝟎. 𝟖)𝒏−𝒌 = 𝟎. 𝟏 (𝟎. 𝟖)𝒏 𝒖[𝒏]∑(𝟎. 𝟗)𝒌 

𝒏

𝒌=𝟎

(𝟎. 𝟖)−𝒌 

𝒚[𝒏] = 𝟎. 𝟏 (𝟎. 𝟖)𝒏 𝒖[𝒏] ∑ (
𝟎. 𝟗

𝟎. 𝟖
)

𝒌

 

𝒏

𝒌=𝟎

= 𝟎. 𝟏 (𝟎. 𝟖)𝒏
𝟏 − (

𝟎. 𝟗
𝟎. 𝟖

)
𝒏+𝟏

𝟏 − (
𝟎. 𝟗
𝟎. 𝟖)

𝒖[𝒏] 

𝒚[𝒏] = 𝟎. 𝟏
(𝟎. 𝟖)𝒏+𝟏 − (𝟎. 𝟗)𝒏+𝟏  

𝟎. 𝟖 − 𝟎. 𝟗
 𝒖[𝒏] = −(𝟎. 𝟖)𝒏+𝟏 𝒖[𝒏] + (𝟎. 𝟗)𝒏+𝟏 𝒖[𝒏] 

For more info, see Handout F Convolution of Two Causal Exponential Sequences. 

iv. Use the z-transform to find 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛].  Track region of convergence.  4 points. 

Solution: Convolution in the discrete-time domain becomes a product in the z-

transform domain: 𝒀(𝒛) = 𝑯(𝒛)𝑿(𝒛).  Here, 

𝑯(𝒛) =
𝟎.𝟏

𝟏−𝟎.𝟗 𝒛−𝟏  𝐟𝐨𝐫 |𝒛| > 𝟎. 𝟗 and  𝑿(𝒛) =
𝟏

𝟏−𝟎.𝟖 𝒛−𝟏  𝐟𝐨𝐫 |𝒛| > 𝟎. 𝟖 

𝒀(𝒛) = (
𝟎.𝟏

𝟏−𝟎.𝟗 𝒛−𝟏) (
𝟏

𝟏−𝟎.𝟖 𝒛−𝟏) 𝐟𝐨𝐫 |𝒛| > 𝐦𝐚𝐱(𝟎. 𝟖, 𝟎. 𝟗)  

We’ll use partial fractions decomposition to express the transfer function as a sum 

of two first-order terms and apply the inverse z-transform. See Ex. 8-10 on p. 219. 

𝒀(𝒛) = 𝟎. 𝟏 (
𝑨

𝟏−𝟎.𝟗 𝒛−𝟏  +  
𝑩

𝟏−𝟎.𝟖 𝒛−𝟏) which gives 𝒚[𝒏] = 𝑨 (𝟎. 𝟗)𝒏 𝒖[𝒏] + 𝑩(𝟎. 𝟖)𝒏 𝒖[𝒏] 

Using the method from Ex. 8-10 on p. 219, 𝑨 =
𝟏

𝟏−
𝟎.𝟖

𝟎.𝟗

= 𝟎. 𝟗 and 𝑩 =
𝟏

𝟏−
𝟎.𝟗

𝟎.𝟖

= −𝟎.𝟖 . 

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20F%20Convolution%20Exp%20Sequences.pdf
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PROBLEM 2: TRANSFER FUNCTION & FREQUENCY RESPONSE CONNECTIONS.  16 points. 

Signal Processing First, problem P-8.16, page 242. 

In addition, for each of the four filters,  

i. give a formula for the transfer function in the z-domain including the region of convergence, 

ii. give a formula for the frequency response from the transfer function in the z-domain in part i. 

why can we convert from the transfer function in the z-domain to a frequency response directly? 

iii. plot the magnitude response in the frequency domain 

iv. indicate the frequency selectivity as lowpass, highpass, bandpass, or bandstop. 

Connecting filter poles/zeros to its frequency selectivity: Please see lecture slide 11-7 and watch a 

YouTube video in spring 2014 for the Real-Time DSP Lab course from the 1:29 to the 22:25 mark 

and from 43:01 to the end (50:51 mark).  When poles and zeros are separated in angle, the angles of 

the poles near the unit circle indicate the frequencies in the passband(s), and the angles of the zeros 

near or on the unit circle indicate the frequencies in the stopband(s).  Poles must be inside the unit 

circle for bounded-input bounded-output (BIBO) stability.  Please see lecture slides 11-8 and 11-9. 

Solution:  Pole-Zero Plot #1 

𝑯(𝒛) = 𝑪 
𝒛−𝒛𝟎

𝒛−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎| where 𝒛𝟎 = 𝟏 and 𝒑𝟎 = −𝟎.𝟗 and C is given in Matlab code. 

Because the region of convergence |𝒛| > 𝟎. 𝟗 includes the unit circle 𝒆𝒋𝝎, 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝑪 
𝒆𝒋𝝎−𝒛𝟎

𝒆𝒋𝝎−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎|  

%%% Specify the filter 

z0 = 1; 

p0 = -0.9; 

C = 0.5;   %% to match (D) 

  

%%% Plot the magnitude response 

w = -pi : (2*pi/10000) : pi; 

Hnumer = (1 - z0*exp(-j*w)); 

Hdenom = (1 - p0*exp(-j*w)); 

H = C * Hnumer ./ Hdenom; 

plot(w, abs(H)); 

xlim( [-pi pi] ); 

xlabel('w [rad/sample]'); 

ylabel('Magnitude Response'); 

Filter has a highpass selectivity and matches (D). 

Solution:  Pole-Zero Plot #2 

𝑯(𝒛) = 𝑪 
𝒛−𝒛𝟎

𝒛−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎| where 𝒛𝟎 = 𝟎 and 𝒑𝟎 = 𝟎. 𝟓 and C is given in Matlab code. 

Because the region of convergence |𝒛| > 𝟎. 𝟓 includes the unit circle 𝒆𝒋𝝎, 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝑪 
𝒆𝒋𝝎−𝒛𝟎

𝒆𝒋𝝎−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎|  

  

https://www.youtube.com/watch?v=WWEKNvvJBvs&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf
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%%% Specify the filter 

z0 = 0; 

p0 = 0.5; 

C = 0.5;   %% to match (B) 

  

%%% Plot the magnitude response 

w = -pi : (2*pi/10000) : pi; 

Hnumer = (1 - z0*exp(-j*w)); 

Hdenom = (1 - p0*exp(-j*w)); 

H = C * Hnumer ./ Hdenom; 

plot(w, abs(H)); 

xlim( [-pi pi] ); 

xlabel('w [rad/sample]'); 

ylabel('Magnitude Response'); 

 

Filter has a lowpass selectivity and matches (B). 
 

Solution:  Pole-Zero Plot #3 

𝑯(𝒛) = 𝑪 
𝒛−𝒛𝟎

𝒛−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎| where 𝒛𝟎 = −𝟏 and 𝒑𝟎 = 𝟎.𝟗 and C is given in Matlab code. 

Because the region of convergence |𝒛| > 𝟎. 𝟗 includes the unit circle 𝒆𝒋𝝎, 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝑪 
𝒆𝒋𝝎−𝒛𝟎

𝒆𝒋𝝎−𝒑𝟎
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎|  

%%% Specify the filter 

z0 = -1; 

p0 = 0.9; 

C = 0.5;   %% to match (A) 

  

%%% Plot the magnitude response 

w = -pi : (2*pi/10000) : pi; 

Hnumer = (1 - z0*exp(-j*w)); 

Hdenom = (1 - p0*exp(-j*w)); 

H = C * Hnumer ./ Hdenom; 

plot(w, abs(H)); 

xlim( [-pi pi] ); 

xlabel('w [rad/sample]'); 

ylabel('Magnitude Response'); 

Filter has a lowpass selectivity and matches (A). 

 

Solution:  Pole-Zero Plot #4 

𝑯(𝒛) = 𝑪 
(𝒛−𝒛𝟎)(𝒛−𝒛𝟏)

(𝒛−𝒑𝟎)(𝒛−𝒑𝟏)
 𝐟𝐨𝐫 |𝒛| > 𝐦𝐚𝐱{ |𝒑𝟎|, |𝒑𝟏| } where 𝒛𝟎 = 𝟎, 𝒛𝟏 = 𝟎, 𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋

𝝅

𝟔 , 𝒑𝟏 =

𝟎.𝟗 𝒆−𝒋
𝝅

𝟔 and C is given in the Matlab code below. 

Because the region of convergence |𝒛| > 𝟎. 𝟗 includes the unit circle 𝒆𝒋𝝎, 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝑪 
(𝒆𝒋𝝎−𝒛𝟎)(𝒆𝒋𝝎−𝒛𝟏)

(𝒆𝒋𝝎−𝒑𝟎)(𝒆𝒋𝝎−𝒑𝟏)
 𝐟𝐨𝐫 |𝒛| > |𝒑𝟎|  

We can expand the numerator and denominator of the transfer function 𝑯(𝒛) : 
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𝑯(𝒛) = 𝑪 
(𝒛 − 𝒛𝟎)(𝒛 − 𝒛𝟏)

(𝒛 − 𝒑𝟎)(𝒛 − 𝒑𝟏)
= 𝑪

𝒛𝟐 − (𝒛𝟎 + 𝒛𝟏) 𝒛 + 𝒛𝟎𝒛𝟏

𝒛𝟐 − (𝒑𝟎 + 𝒑𝟏) 𝒛 + 𝒑𝟎𝒑𝟏
= 𝑪

𝒃𝟎𝒛
𝟐 + 𝒃𝟏𝒛 + 𝒃𝟐

𝒂𝟎𝒛𝟐 + 𝒂𝟏𝒛 + 𝒂𝟐
 

%%% Specify the filter 

%%% Zeros and numerator coefficients 

z0 = 0; 

z1 = 0; 

b0 = 1; 

b1 = -(z0+z1); 

b2 = z0*z1; 

numerCoeffs = [b0 b1 b2]; 

  

%%% Poles and denominator coefficients 

p0 = 0.9*exp(j*pi/6); 

p1 = 0.9*exp(-j*pi/6); 

a0 = 1; 

a1 = -(p0+p1); 

a2 = p0*p1; 

denomCoeffs = [a0 a1 a2]; 

  

%%% Gain for the filter 

C = 1; 

  

%%% Plot the magnitude response 

w = -pi : (2*pi/10000) : pi; 

Hnumer = (b0 + b1*exp(-j*w) + b2*exp(-j*2*w)); 

Hdenom = (a0 + a1*exp(-j*w) + a2*exp(-j*2*w)); 

H = C * Hnumer ./ Hdenom; 

plot(w, abs(H)); 

xlim( [-pi pi] ); 

xlabel('w [rad/sample]'); 

ylabel('Magnitude Response'); 

Filter has a bandpass selectivity and matches (E). 

 

PROBLEM 3: CONTINUOUS-TIME SYSTEM PROPERTIES.  16 points. 

Signal Processing First, problem P-9.2, page 279. 

In each of the following cases, state whether or not the continuous time system is (i) linear, (ii) time-

invariant, (iii) stable, and (iv) causal. In each case, x(t) he represents the input and y(t) represents 

the corresponding output of the system. Provide a brief justification, either in the form of 

mathematical equations or statements in the form of complete, crack, push sentences. Remember, 

in order to show the system does not have the property, all you have to do is give an example and 

put up with is not satisfy the condition of the property. 

(a) An exponential system: 𝑦(𝑡) = 𝑒𝑥(𝑡+2).  Used in speech denoising and machine learning. 

(b) A phase modulator: 𝑦(𝑡) = cos(𝜔𝑐𝑡 + 𝑥(𝑡)). Phase modulation is used for low-power 

transmission in IoT systems. The digital version, Phase Shift Keying, is used in RFID and 

Bluetooth and higher transmit power systems, such as Wi-Fi and cellular communications. 

(c) An amplitude modulator: 𝑦(𝑡) = (𝐴 + 𝑥(𝑡)) cos(𝜔𝑐𝑡). Used in AM radio. Amplitude 

modulation (without the offset of A) is used in Wi-Fi, cellular and cable modems. 

https://en.wikipedia.org/wiki/Phase_modulation
https://en.wikipedia.org/wiki/Phase-shift_keying
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(d) Take the even part of the input signal: 𝑦(𝑡) =
𝑥(𝑡)+𝑥(−𝑡)

2
. Primarily for theoretical analysis. 

Solution: Linearity 

When checking each system for linearity, we can use the quick test of input signal of 0 for 

all time, which is a by-product of the homogeneity property when the input signal is scaled 

by a = 0. If the output signal is not zero for all time, then the system is not linear. If the 

output is zero for all time, then we'll have to apply the mathematical definitions for 

homogeneity and additivity. 

(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐) = 𝒆𝟎 = 𝟏.  Fails all-zero input test.  Not linear. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)) = 𝐜𝐨𝐬(𝝎𝒄𝒕).  Fails all-zero input test.  Not linear. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕) = 𝑨 𝐜𝐨𝐬(𝝎𝒄𝒕). Fails all-zero input test.  Not linear. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
= 𝟎.  Passes all-zero input test.  Check for homogeneity and additivity. 

 Homogeneity. Input 𝒂 𝒙(𝒕).  Output 𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) =
(𝒂 𝒙(𝒕))+(𝒂 𝒙(−𝒕))

𝟐
= 𝒂 

𝒙(𝒕)+𝒙(−𝒕)

𝟐
= 𝒂 𝒚(𝒕) 

 Additivity. Input 𝒙𝟏(𝒕) + 𝒙𝟐(𝒕). Output 

 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) =
(𝒙𝟏(𝒕)+𝒙𝟐(𝒕))+(𝒙𝟏(−𝒕)+𝒙𝟐(−𝒕))

𝟐
=

𝒙𝟏(𝒕)+𝒙𝟏(−𝒕)

𝟐
+

𝒙𝟐(𝒕)+𝒙𝟐(−𝒕)

𝟐
= 𝒚𝟏(𝒕) + 𝒚𝟐(𝒕) 

Yes, system (d) is linear. 

Solution: Time-Invariance 

For time-invariant system, shift of the input signal by any real-valued  causes the same 

shift in output signal, i.e. x(t - ) means y(t - ) for all . 

(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐).  Input 𝒙(𝒕 − 𝝉). Output 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒆𝒙((𝒕−𝝉)+𝟐) = 𝒆𝒙(𝒕−𝝉+𝟐) = 𝒚(𝒕 − 𝝉).  

Time-invariant. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  The signal 𝐜𝐨𝐬(𝝎𝒄𝒕) is part of the system and does not shift in 

time when the input shifts in time.  Time-varying. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕).  The signal 𝐜𝐨𝐬(𝝎𝒄𝒕) is part of the system and does not 

shift in time when the input shifts in time.  Time-varying. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
.  The copy of the input signal shifts in the same way that the input 

signal shifts.  The copy that is reversed in time gives the negated shift.  Time-varying. 

Solution: Stability 

A stable system will always produce a bounded amplitude output signal when given a 

bounded amplitude input signal.  Let |𝒙(𝒕)| < 𝑩 < ∞ 

(a) |𝒚(𝒕)| = |𝒆𝒙(𝒕+𝟐)| ≤ |𝒆𝑩|.  Bounded output.  Stable. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  Output will always be in range [-1, 1] regardless of the value 

of 𝒙(𝒕). Bounded output.  Stable. 

(c) |𝒚(𝒕)| = |(𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕)| ≤ |𝑨 + 𝒙(𝒕)| |𝐜𝐨𝐬(𝝎𝒄𝒕)| ≤ |𝑨 + 𝒙(𝒕)| ≤ |𝑨| + |𝒙(𝒕)| ≤ |𝑨| + 𝑩. 

Bounded output.  Stable. 
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(d) |𝒚(𝒕)| = |
𝒙(𝒕)+𝒙(−𝒕)

𝟐
| ≤

|𝒙(𝒕)|

𝟐
+

|𝒙(−𝒕)|

𝟐
≤ 𝑩.  Bounded output.  Stable. 

Solution: Causality 

A causal system depends only on current and previous input values and/or previous output 

value to compute an output value. 

(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐).  Depends on input 2 seconds in the future.  Not Causal. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  Only depends on the current input value 𝒙(𝒕).  Causal. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕).  Only depends on the current input value 𝒙(𝒕).  Causal. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
 .  Check specific values of time t. 

 When t = 0, y(0) = ( x(0) + x(0) ) / 2 = x(0). Causal. 

 When t = 2, y(2) = ( x(2) + x(-2) ) / 2. Causal. 

 When t = -2, y(-2) = ( x(-2) + x(2) ) / 2. Depends on future input x(2).  Not Causal. 

 

PROBLEM 4: CONTINUOUS-TIME AVERAGING FILTERS. 34 points. 

For a continuous-time LTI system with input signal 𝑥(𝑡) and impulse response ℎ(𝑡), the output 

signal 𝑦(𝑡) is the convolution of ℎ(𝑡) and 𝑥(𝑡): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) = ∫ ℎ(𝜆) 𝑥(𝑡 − 𝜆) 𝑑𝜆

∞

−∞

 

(a) Compute the output 𝑦(𝑡) when the input 𝑥(𝑡) is a rectangular pulse of amplitude 1 for 𝑡 ∈
[0, 𝑇𝑥] and amplitude 0 otherwise and 𝑥[𝑛] is filtered by an LTI unnormalized averaging 

filter whose impulse response ℎ(𝑡) is a rectangular pulse of amplitude 1 for 𝑡 ∈ [0, 𝑇ℎ] and 

amplitude 0 otherwise.  Assume 𝑇𝑥 ≠ 𝑇ℎ. 

i. Write an equation relating output 𝑦(𝑡) and input 𝑥(𝑡).  4 points 

Solution: With 𝒉(𝒕) = 𝟏 for 𝒕 ∈ [𝟎, 𝑻𝒉], 

𝒚(𝒕) = 𝒉(𝒕) ∗ 𝒙(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀

∞

−∞

= ∫ 𝒙(𝒕 − 𝝀) 𝒅𝝀

𝑻𝒉

𝟎

 

We can apply the change of variables 𝒖 = 𝒕 − 𝝀.  𝒅𝒖 = −𝒅𝝀.  As 𝝀 → 𝟎, 𝒖 → 𝒕.  As 

𝝀 → 𝑻𝒉, 𝒖 → 𝒕 − 𝑻𝒉.  This gives 

𝒚(𝒕) = ∫ 𝒙(𝒕 − 𝝀) 𝒅𝝀 = ∫ 𝒙(𝒖) 𝒅𝒖

𝒕

𝒕−𝑻𝒉

𝑻𝒉

𝟎

 

The averaging filter integrates the input signal over the previous 𝑻𝒉 seconds. 

Although not asked, this filter is stable unlike the integrator over all time in part (b). 

ii. What is(are) the initial condition(s) and what value should it(they) be set to?  3 points 
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Solution: The initial conditions are the memory of the previous 𝑻𝒉 seconds of the 

input signal.  This memory (signal buffer) would have to be initially zeroed out. 

iii. Develop a formula for 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) using the convolution definition in terms of 

𝑇𝑥  and 𝑇ℎ.  Show the intermediate steps in computing the convolution.  6 points 

Solution: Trapezoid of duration 𝑻𝒚 = 𝑻𝒉 + 𝑻𝒙.  Let 𝑻𝒎𝒊𝒏 = 𝐦𝐢𝐧(𝑻𝒉, 𝑻𝒙) and 𝑻𝒎𝒂𝒙 =

𝐦𝐚𝐱(𝑻𝒉, 𝑻𝒙).  As we flip and slide one rectangular pulse against the other, partial 

overlap occurs from 0 to 𝑻𝒎𝒊𝒏 seconds, complete overlap from 𝑻𝒎𝒊𝒏 to 𝑻𝒎𝒂𝒙  

seconds, and partial overlap from 𝑻𝒎𝒂𝒙  to 𝑻𝒚 seconds. 

𝒚(𝒕) =

[
 
 
 
 

𝟎 𝐟𝐨𝐫 𝒕 < 𝟎
𝒕 𝐟𝐨𝐫 𝟎 ≤ 𝒕 < 𝑻𝒎𝒊𝒏

       𝑻𝒎𝒊𝒏      𝐟𝐨𝐫 𝑻𝒎𝒊𝒏 ≤ 𝒕 < 𝑻𝒎𝒂𝒙

𝑻𝒚 − 𝒕 𝐟𝐨𝐫 𝑻𝒎𝒂𝒙 ≤ 𝒕 < 𝑻𝒚

𝟎 𝐟𝐨𝐫 𝒕 > 𝑻𝒚 

 

The details of the flip-and-slide are analogous to problem 1(a)iii for the discrete-

time convolution of two rectangular pulses, and explained next. 

We will hold 𝒉(𝒕) in place and flip and slide 𝒙(𝒕)about 𝒉(𝒕): 

 

 

 

 

There are five cases to consider: 

1. No overlap.  𝒕 < 𝟎.  Amplitude is 0. 

2. Partial overlap.  𝟎 ≤ 𝒕 < 𝑻𝒎𝒊𝒏.  Amplitude is 𝒕. 

Initial overlap at the origin, and integration of a point is zero.  Each shift by a 

time unit adds that much to the area. 

𝒚(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀 =

∞

−∞

∫ 𝒅𝝀

𝐭

𝟎

= 𝒕 

3. Complete overlap.  𝑻𝒎𝒊𝒏 ≤ 𝒕 < 𝑻𝒎𝒂𝒙 .  Amplitude is 𝑻𝒎𝒊𝒏.   

Here, 𝑻𝒎𝒊𝒏 seconds overlap, and each amplitude has a value of one. 

4. Partial overlap. 𝑻𝒎𝒂𝒙 ≤ 𝒏 < 𝑻𝒚.  Amplitude is 𝑻𝒚 − 𝒕.   

Amplitude reduces by the same amount that t is shifted. 

𝒚(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀 =

∞

−∞

∫  𝒅𝝀

𝑻𝒉

𝒕−𝑻𝒙

= 𝑻𝒉 − (𝒕 − 𝑻𝒙) = 𝑻𝒚 − 𝒕 

5. No overlap.  𝒕 ≥ 𝑻𝒚.  Amplitude is 0. 
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iv. Validate the formula for 𝑦(𝑡) to compute the convolution for 𝑇𝑥 = 9 seconds and 𝑇ℎ =
4 seconds.   3 points. 

Solution:  Trapezoid of duration 𝑻𝒚 = 𝟒 + 𝟗 = 𝟏𝟑 seconds.  Let 𝑻𝒎𝒊𝒏 = 𝐦𝐢𝐧(𝟒, 𝟗) =

𝟒 seconds and 𝑻𝒎𝒂𝒙 = 𝐦𝐚𝐱(𝟒, 𝟗) = 𝟗 seconds.  As we flip and slide one rectangular 

pulse against the other, partial overlap occurs from 0 to 𝑻𝒎𝒊𝒏 seconds, complete 

overlap from 𝑻𝒎𝒊𝒏 to 𝑻𝒎𝒂𝒙  seconds, and partial overlap from 𝑻𝒎𝒂𝒙  to 𝑻𝒚 seconds. 

𝒚(𝒕) =

[
 
 
 
 

𝟎 𝐟𝐨𝐫 𝒕 < 𝟎
𝒕 𝐟𝐨𝐫 𝟎 ≤ 𝒕 < 𝟒

     𝟒     𝐟𝐨𝐫 𝟒 ≤ 𝒕 < 𝟗
𝟏𝟑 − 𝒕 𝐟𝐨𝐫 𝟗 ≤ 𝒕 < 𝟏𝟑

𝟎 𝐟𝐨𝐫 𝒕 >  𝟏𝟑

 

Using the cconvdemo from Signal Processing First, 

 

(b) When an input signal has an average value of zero, i.e. the DC component is zero, an LTI 

integrator can be used as an averaging filter. The differential equation governing the input-

output relationship is 

𝑦(𝑡) = ∫𝑥(𝜏) 𝑑𝜏   for 𝑡 ≥ 0

𝑡

0−

 

The integrator was operating before t = 0 seconds, but we aren't able to observe that. 

We are observing the system starting at t = 0 seconds. 

Since we are starting the integration at t = 0 seconds, there is ambiguity as to whether 

Dirac delta signal would be included at time 0. We can use 0- as the lower limit to 

indicate that integration starts at time 0 before the impulse occurs. 
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i. What is(are) the initial condition(s) and what value should it(they) be set to?  3 points 

Solution: The initial condition is the initial integration value y(0).  It should be set to 

zero as a necessary condition for LTI properties to hold. 

ii. What is the impulse response?  3 points 

Solution: For input 𝒙(𝒕) = 𝜹(𝒕), the output is the impulse response 

𝒉(𝒕) = ∫𝜹(𝝉) 𝒅𝝉 = 𝒖(𝒕)

𝒕

𝟎−

 

iii. Develop a formula for 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) using the convolution definition when the input 

signal is 𝑥(𝑡) = 𝑢(𝑡).  Note that 𝑥(𝑡) has bounded amplitude.  9 points 

Solution: Using the convolution definition, 

𝒚(𝒕) = 𝒉(𝒕) ∗ 𝒙(𝒕) = 𝒖(𝒕) ∗ 𝒖(𝒕) = ∫ 𝒖(𝝀) 𝒖(𝒕 − 𝝀) 𝒅𝝀

∞

−∞

 

𝒖(𝝀) is 1 for 𝝀 ≥ 𝟎 and 0 otherwise, whereas 𝒖(𝒕 − 𝝀) is 1 for 𝒕 − 𝝀 ≥ 𝟎 or 𝝀 ≤ 𝒕.  
Also, note that 𝒕 ≥ 𝟎 because 𝝀 ≥ 𝟎: 

𝒚(𝒕) = ∫  𝒅𝝀 = 𝒕 𝒖(𝒕)

𝒕

𝟎

 

iv. Is the LTI integrator bounded-input bounded-output (BIBO) stable?  Your work in part iii 

might be helpful.  3 points 

Solution:  For input signal 𝒙(𝒕) = 𝒖(𝒕), whose amplitude is bounded in [0, 1], the 

output 𝒚(𝒕) = 𝒕 𝒖(𝒕) grows without bound as 𝒕 →  ∞.  LTI integrator is not stable. 


