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PROBLEM 1: FREQUENCY AND STEP RESPONSES 

For each of the following linear time-invariant (LTI) systems, determine the impulse response, step 

response, and frequency response.  Plot the magnitude and phase of the frequency response using 

freqz: 

a) First-order unnormalized averaging filter (lowpass filter): 𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 1] for 𝑛 ≥ 0 

and the initial condition 𝑥[−1] = 0 to satisfy LTI properties. 

b) First-order difference filter (highpass filter): 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] for 𝑛 ≥ 0 and the initial 

condition 𝑥[−1] = 0 to satisfy LTI properties 

c) Second-order difference filter (highpass filter): 𝑦[𝑛] = 𝑥[𝑛] − 2 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] for 𝑛 ≥
0 and the initial condition 𝑥[−1] = 0 and 𝑥[−2] = 0 to satisfy LTI properties 

Solution for part (a) subpart 1: The impulse 

response is the output (response) when the input is 

the discrete-time impulse 𝛿[𝑛].  When 𝑥[𝑛] =
𝛿[𝑛], the output is 

ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] 

We compute several impulse response values: 

h[0] = [0] + [-1] = 1 + 0 = 1 

h[1] = [1] + [0] = 0 + 1 = 1 

h[2] = [2] + [1] = 0 + 0 = 0 

 

 
Solution for part (a) subpart 2: The step 

response ystep[n] is the output (response) when the 

input is the discrete-time step function u[n].  The 

unit step is u[n] = 1 for 𝑛 ≥ 0 and 0 otherwise.  

When 𝑥[𝑛] = 𝑢[𝑛], the output is 

𝑦𝑠𝑡𝑒𝑝[𝑛] = 𝑢[𝑛] + 𝑢[𝑛 − 1] 

Matlab code: 

stepsignal = [ 1 1 1 1 1 1 1 1 ]; 

ystep = filter( [1 1], 1, stepsignal ); 

n = [ 0 1 2 3 4 5 6 7 ]; 

figure; 

stem(n, ystep); 

ylim( [-0.5 2.5] );  

xlim( [-0.5 7.5 ] ); 

 

 

h = [ 1 1 0 0 0 ]; 

n = [ 0 1 2 3 4 ]; 

stem(n, h); 

ylim( [-0.5 1.5] ); 

xlim( [-0.5 4.5 ] ); 
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Solution for part (a) subpart 3: The frequency response of the LTI system is the discrete-time 

Fourier transform of the impulse response: 

𝐻𝑎(𝑒𝑗�̂�) = ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

+∞

𝑛=−∞

= ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

1

𝑛=0

= ℎ[0] + ℎ[1]𝑒−𝑗�̂� = 1 + 𝑒−𝑗�̂� 

We can factor the frequency response into magnitude-phase form per lecture slide 9-9 by 

factoring out the phase shift corresponding to the delay equal to the index of the midpoint of the 

impulse response, which is at an index of ½, and hence the phase shift is 𝑒−𝑗
𝜔

2  : 

𝐻𝑎(𝑒𝑗�̂�) = 𝑒−𝑗
𝜔
2
̂

(𝑒𝑗
𝜔
2
̂

+ 𝑒−𝑗
𝜔
2
̂

) = 𝑒−𝑗
𝜔
2
̂

(2 cos (
𝜔

2

̂
)) 

Magnitude response: 2 cos (
𝜔

2

̂) which is non-

negative for −𝜋 ≤  𝜔 <  𝜋. 

Phase response:  −
𝜔

2

̂
 which is a line of slope 

−
1

2
 that passes through the origin. 

The MATLAB command:  

freqz( [1 1] ); 

will plot the magnitude and phase response 

for an LTI system with impulse response 

ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] 

The magnitude response, by default, will be 

plotted in decibels vs. discrete-time 

frequency, where AdB = 20 log10 |A| for 

0 ≤  𝜔 <  𝜋, as shown above.  It is a lowpass filter. 

 

Solution for part (b) subpart 1: The impulse response is the output (response) when the input is 

the discrete-time impulse 𝛿[𝑛].  When 𝑥[𝑛] = 𝛿[𝑛], the output is 

ℎ[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] 

We compute several impulse response 

values:  

h[0] = [0] - [-1] = 1 - 0 = 1 

h[1] = [1] - [0] = 0 - 1 = -1   

h[2] = [2] - [1] = 0 - 0 = 0   

… 
 

h = [ 1 -1 0 0 0 ]; 

n = [ 0  1 2 3 4 ]; 

stem(n, h); 

ylim( [-1.5 1.5] ); 

xlim( [-0.5 4.5 ] ); 
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Solution for part (b) subpart 2: The step response 

ystep[n] is the output (response) when the input is the 

discrete-time step function u[n].  When 𝑥[𝑛] = 𝑢[𝑛], 
the output is 

𝑦𝑠𝑡𝑒𝑝[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1] 
Matlab code: 

stepsignal = [ 1 1 1 1 1 1 1 1 ]; 

ystep = filter( [1 -1], 1, stepsignal ); 

n = [ 0 1 2 3 4 5 6 7 ]; 

figure; 

stem(n, ystep); 

ylim( [-0.5 1.5] );  

xlim( [-0.5 7.5 ] ); 

 

Solution for part (b) subpart 3:  The frequency response of the LTI system is the Fourier 

transform of the impulse response: 

𝐻𝑏(𝑒𝑗�̂�) = ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

+∞

𝑛=−∞

= ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

1

𝑛=0

= ℎ[0] − ℎ[1] 𝑒−𝑗�̂� = 1 − 𝑒−𝑗�̂�  

We can factor the frequency response into polar form per lecture slide 9-9: 

𝐻𝑏(𝑒𝑗�̂�) = 𝑒−𝑗
𝜔
2
̂

(𝑒𝑗
𝜔
2
̂

− 𝑒−𝑗
𝜔
2
̂

) = 𝑒−𝑗
𝜔
2
̂

(2 𝑗 sin (
𝜔

2

̂
)) 

Using the fact that 𝑗 = 𝑒𝑗
𝜋

2  ,  

𝐻𝑏(𝑒𝑗�̂�) = 𝑒−𝑗
𝜔
2
̂

(2 𝑒𝑗
𝜋
2  sin (

𝜔

2

̂
)) = 2 sin (

𝜔

2

̂
) 𝑒𝑗(

𝜋
2−

𝜔
2
̂

)
 

Amplitude Response: 2 sin (
𝜔

2

̂) is non-positive for 

−𝜋 ≤ �̂� < 0  (which is not a magnitude) and non-

negative for 0 ≤  �̂� <  𝜋 (which is a magnitude). 

Phase Response: 
𝜋

2
−

𝜔

2

̂
 which is a line of slope −

1

2
 that 

intercepts the y-axis at 
𝜋

2
 .  See next for more info. 

We can put 𝐻𝑏(𝑒𝑗�̂�) into magnitude-phase form for 

−𝜋 ≤  �̂� < 0 by multiplying the amplitude term by -1 and the phase term by −1 =  𝑒−𝑗 𝜋 : 

𝐻𝑏(𝑒𝑗�̂�) = [
− 2 sin (

𝜔

2

̂
) 𝑒

𝑗(−
𝜋
2−

𝜔
2
̂

)
−𝜋 ≤  𝜔 < 0

2 sin (
𝜔

2

̂
) 𝑒𝑗(

𝜋
2−

𝜔
2
̂

) 0 ≤  𝜔 <  𝜋

 

There is a discontinuity in the phase at �̂� = 0, with a jump in phase of 𝜋 rad/sample. 

A student noticed the similarity between the impulse responses between parts (a) and (b): 

ℎ𝑎[𝑛] = (−1)𝑛 ℎ𝑏[𝑛] = cos(𝜋 𝑛) ℎ𝑏[𝑛] 

This is amplitude modulation which shifts the frequency content by  and -. 

freqz( [1 -1] ); 
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Solution for part (c) subpart 1: The impulse response is the output (response) when the input is 

the discrete-time impulse 𝛿[𝑛].  When 𝑥[𝑛] = 𝛿[𝑛], the output is 

ℎ[𝑛] = 𝛿[𝑛] − 2𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] 

We compute several impulse response values: 

h[0] = [0] – 2 [-1] + [-2] = 1 - 0 + 0 = 1 

h[1] = [1] – 2 [0] + [-1] = 0 - 2 + 0 = -2 

h[2] = [2] – 2 [1] + [0] = 0 - 0 + 1 = 1 

h[3] = [3] – 2 [2] + [1] = 0 - 0 + 0 = 0 

… 

MATLAB code for the plot of ℎ[𝑛]: 
h = [ 1 -2 1 0 0 ]; 

n = [ 0  1 2 3 4 ]; 

stem(n, h); 

ylim( [-2.5 2.5] ); 

xlim( [-0.5 4.5 ] ); 

 

Solution for part (c) subpart 2: The step 

response ystep[n] is the output (response) when 

the input is the discrete-time step function u[n].  

When 𝑥[𝑛] = 𝑢[𝑛], the output 

𝑦𝑠𝑡𝑒𝑝[𝑛] = 𝑢[𝑛] − 2 𝑢[𝑛 − 1] + 𝑢[𝑛 − 2] 
Matlab code: 

stepsignal = [ 1 1 1 1 1 1 1 1 ]; 

ystep = filter( [1 -2 1], 1, 

stepsignal ); 

n = [ 0 1 2 3 4 5 6 7 ]; 

figure; 

stem(n, ystep); 

ylim( [-1.5 1.5] );  

xlim( [-0.5 7.5 ] ); 

 

 

Solution for part (c) subpart 3:  The 

frequency response of the LTI system is the 

Fourier transform of the impulse response: 

𝐻𝑐(𝑒𝑗�̂�) = ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

+∞

𝑛=−∞

= ∑ ℎ[𝑛] 𝑒−𝑗�̂�𝑛

2

𝑛=0

 

          = ℎ[0] − 2ℎ[1]𝑒−𝑗�̂� + ℎ[2]𝑒−2𝑗�̂� 

                 = 1 − 2𝑒−𝑗�̂� + 𝑒−2𝑗�̂� 

The MATLAB command:  

freqz( [1 -2 1] ); 
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PROBLEM 2: CASCADE OF THREE SYSTEMS 

Suppose that three systems are connected in cascade; i.e., the output of 𝑆1 is the input to 𝑆2, and 

the output of 𝑆2 is the input to 𝑆3. The three systems are specified as follows 

𝒮1: 𝑦1[𝑛] =  𝑥1[𝑛] − 𝑥1[𝑛 − 1] 

𝒮2: 𝑦2[𝑛] =  𝑥2[𝑛] + 𝑥2[𝑛 − 2] 

𝒮3: 𝑦3[𝑛] =  𝑥3[𝑛 − 1] + 𝑥3[𝑛 − 2] 

where the output of 𝑆𝑖 is 𝑦𝑖[𝑛] and its input is 𝑥𝑖[𝑛]. 

(a) Determine the equivalent system that is a single operation from the input 𝑥[𝑛] (into 𝑆1) to 

the output 𝑦[𝑛], which is the output of 𝑆3.  Thus, 𝑥[𝑛] is 𝑥1[𝑛] and 𝑦[𝑛] is 𝑦3[𝑛]. 

(b) Use the frequency response to write one difference equation that defines the overall 

system in terms of 𝑥[𝑛] and 𝑦[𝑛] only. 

Solution to (a):  Here’s a block diagram of the cascade of the three systems. 

 

Approach #1 Using Impulse Responses.  We find the impulse response of the overall system by 

letting 𝑥[𝑛] = 𝛿[𝑛].  The output of LTI System #1 will be its impulse response ℎ1[𝑛].  The 

signal ℎ1[𝑛] is the input to LTI System #2 and the output is ℎ1[𝑛] ∗ ℎ2[𝑛] where * denotes 

convolution.  (See Lecture Slides 8-8 and 8-11 and SP First Sections 5-6 and 5-7.)  The response 

ℎ1[𝑛] ∗ ℎ2[𝑛] is the input to LTI System #3 and the output is ℎ1[𝑛] ∗ ℎ2[𝑛] ∗ ℎ3[𝑛]  The impulse 

responses are 

ℎ1[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1]     ℎ2[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 2]      ℎ3[𝑛] = 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] 

We know that the length of the signal that results from the convolution of two finite-length 

signals is the sum of the lengths of the two finite-length signals.  Here, ℎ1[𝑛] is of length 2 

samples and ℎ2[𝑛] is of length 3 samples, and hence, the result will have 4 samples: 

ℎ1[𝑛] ∗ ℎ2[𝑛] = ∑ ℎ1[𝑘] ℎ2[𝑛 − 𝑘]

3

𝑘=0

= ∑(𝛿[𝑘] − 𝛿[𝑘 − 1]) (𝛿[𝑛 − 𝑘] + 𝛿[𝑛 − 𝑘 − 2])

3

𝑘=0

 

ℎ1[𝑛] ∗ ℎ2[𝑛] = ∑ 𝛿[𝑘] 𝛿[𝑛 − 𝑘] + 𝛿[𝑘] 𝛿[𝑛 − 𝑘 − 2] − 𝛿[𝑘 − 1]𝛿[𝑛 − 𝑘] − 𝛿[𝑘 − 1] 𝛿[𝑛 − 𝑘 − 2]

3

𝑘=0

  

The discrete-time impulse 𝛿[𝑛] is 1 for 𝑛 = 0 and 0 otherwise.  The product 𝛿[𝑘] 𝛿[𝑛 − 𝑘] is 1 

when 𝑘 = 0 and the product simplifies to 𝛿[𝑛]: 

ℎ1[𝑛] ∗ ℎ2[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 2] − 𝛿[𝑛 − 1] − 𝛿[𝑛 − 3] 

ℎ1[𝑛] ∗ ℎ2[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − 𝛿[𝑛 − 3] 
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Convolution for finite-length signals is reminiscent of polynomial multiplication.  In fact, the 

Matlab command conv can also be used to compute the product of two polynomials. 

We could check our answers for the convolution calculations in MATLAB: 

h1Convh2 = conv( [1 -1], [1 0 1] );    %% gives 1  -1  1  -1 

h = conv(h1Convh2, [0 1 1] );          %% gives 0   1  0   0   0  -1 

which gives [ 0     1     0     0     0    -1 ] or equivalently ℎ[𝑛] = 𝛿[𝑛 − 1] − 𝛿[𝑛 − 5]. 

𝑦[𝑛] = ∑ ℎ[𝑘] 𝑥[𝑛 − 𝑘] = 𝑥[𝑛 − 1] − 𝑥[𝑛 − 5]

𝑀

𝑘=0

 

 

Approach #2 Rewriting Equations.  The output of the second system is the input of the third 

system,  𝑦2[𝑛] = 𝑥3[𝑛]: 

𝑦3[𝑛] =  𝑥3[𝑛 − 1] + 𝑥3[𝑛 − 2] 

           =  𝑦2[𝑛 − 1] + 𝑦2[𝑛 − 2] 

           =  𝑥2[𝑛 − 1] + 𝑥2[𝑛 − 3] + 𝑥2[𝑛 − 2] + 𝑥2[𝑛 − 4] 

           =  𝑥2[𝑛 − 1] + 𝑥2[𝑛 − 2] + 𝑥2[𝑛 − 3] + 𝑥2[𝑛 − 4] 

The output of the first system is the input of the second system: 

𝑦1[𝑛] = 𝑥2[𝑛] 

𝑦3[𝑛] =  𝑥2[𝑛 − 1] + 𝑥2[𝑛 − 2] + 𝑥2[𝑛 − 3] + 𝑥2[𝑛 − 4] 
           = 𝑦1[𝑛 − 1] + 𝑦1[𝑛 − 2] + 𝑦1[𝑛 − 3] + 𝑦1[𝑛 − 4] 
          = 𝑥1[𝑛 − 1] − 𝑥1[𝑛 − 2] + 𝑥1[𝑛 − 2] − 𝑥1[𝑛 − 3] + 𝑥1[𝑛 − 3] − 𝑥1[𝑛 − 4] + 𝑥1[𝑛 − 4] − 𝑥1[𝑛 − 5] 
           =  𝑥1[𝑛 − 1] − 𝑥1[𝑛 − 5] 

The equivalent system that is a single operation from the input 𝑥[𝑛] (into 𝒮1) to the output 𝑦[𝑛], 
which is the output of 𝒮3, is the following: 

𝑦[𝑛] = 𝑥[𝑛 − 1] − 𝑥[𝑛 − 5] 
 

Solution for part (b): The frequency response form of the systems 1, 2, and 3 are shown below: 

𝒮1: 𝐻1(𝑒𝑗�̂�) = 1 − 𝑒−𝑗�̂� 

𝒮2: 𝐻2(𝑒𝑗�̂�) = 1 + 𝑒−2𝑗�̂� 

𝒮3: 𝐻3(𝑒𝑗�̂�) = 𝑒−𝑗�̂� + 𝑒−2𝑗�̂� 

The three systems are connected in cascade. Therefore,  

𝐻(𝑒𝑗�̂�) = 𝐻1(𝑒𝑗�̂�)𝐻2(𝑒𝑗�̂�)𝐻3(𝑒𝑗�̂�) = (1 − 𝑒−𝑗�̂�)(1 + 𝑒−2𝑗�̂�)( 𝑒−𝑗�̂� + 𝑒−2𝑗�̂�)

= (1 + 𝑒−2𝑗�̂� − 𝑒−𝑗�̂� − 𝑒−3𝑗�̂�)( 𝑒−𝑗�̂� + 𝑒−2𝑗�̂�)

=  𝑒−𝑗�̂� + 𝑒−2𝑗�̂� + 𝑒−3𝑗�̂� + 𝑒−4𝑗�̂� − 𝑒−2𝑗�̂� − 𝑒−3𝑗�̂� − 𝑒−4𝑗�̂� − 𝑒−5𝑗�̂�

= 𝑒−𝑗�̂� − 𝑒−5𝑗�̂� 

Converting back: 

𝑦[𝑛] = 𝑥[𝑛 − 1] − 𝑥[𝑛 − 5]  
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Epilogue:  In the time domain, the response (output) of an LTI system will be the convolution of 

the input signal and the system’s impulse response.  In the frequency domain, the output of the 

LTI system will be the product of the input frequency content and the system’s frequency 

response.  The discrete-time Fourier transform can compute the frequency content of a periodic 

or aperiodic signal.  It is a generalization of the discrete-time Fourier series. 

The convolution of two finite-length signals can be computed using polynomial multiplication.  

That is, each finite-length signal can be represented as a finite-length vector of amplitude values, 

and the process of convolving these vectors is the same as polynomial multiplication when 

interpreting the vectors as polynomial coefficients.  See the Epilogue for Problem 3 which talks 

about the same connection in the z-domain, where it might be easier to see. 
 

PROBLEM 3: TRANSFER FUNCTIONS IN THE 𝔃 DOMAIN 

For each of the following linear time-invariant (LTI) systems, derive the transfer function, compute 

the poles and zeros, and plot the poles and zeros using zplane: 

a) First-order unnormalized averaging filter (lowpass filter): 𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 1] for 𝑛 ≥ 0 

and the initial condition 𝑥[−1] = 0 to satisfy LTI properties. 

b) First-order difference filter (highpass filter): 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] for 𝑛 ≥ 0 and the initial 

condition 𝑥[−1] = 0 to satisfy LTI properties 

c) Second-order difference filter (highpass filter): 𝑦[𝑛] = 𝑥[𝑛] − 2 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] for 𝑛 ≥
0 and the initial condition 𝑥[−1] = 0 and 𝑥[−2] = 0 to satisfy LTI properties 

Solution for part (a): 𝑦[𝑛] =  𝑥[𝑛] + 𝑥[𝑛 − 1] for 𝑛 ≥ 0 and 𝑥[−1] = 0 as a necessary 

condition for the system to be at rest. The impulse response is: 

ℎ[𝑛] =  𝛿[𝑛] + 𝛿[𝑛 − 1] 

By performing the z-transform of the impulse response, 

we can calculate the transfer function: 

𝐻(𝑧) = 1 + 𝑧−1 =
𝑧 + 1

𝑧
 

The pole (root of the denominator) is at z = 0, and the 

zero (root of the nominator) is at z = -1. 

Using zplane, we can plot zeros and poles: 

zplane([1 1]) 

In the plot above, a pole is shown by × and a zero is depicted by o; 

hence, the system has one pole at z = 0 and one zero at z = -1 
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Solution for part (b):  With 

[ ] [ ] [ 1]y n x n x n= − −  

the impulse response is 

[ ] [ ] [ 1]h n n n = − − . 

The transfer function is: 

𝐻(𝑧) = 1 − 𝑧−1 =
𝑧 − 1

𝑧
 

Therefore, system has one pole at z = 0, 

and one zero at z = 1. 

MATLAB code: 

zplane([1 -1]) 

 

Solution for part (c): With 

[ ] [ ] 2 [ 1] [ 2]y n x n x n x n= − − + −  

the impulse response is 

[ ] [ ] 2 [ 1] [ 2]h n n n n  = − − + −  

and the transfer function is: 

𝐻(𝑧) = 1 − 2 𝑧−1 + 𝑧−2 =
𝑧2 − 2 𝑧 + 1

𝑧2
 

System has two poles at z = 0, and two zeros 

at z = 1: 

zplane([1 -2 1]) 

 

Epilogue: Armed with the z-transform, we’ll take another look at the connection between 

convolution and polynomial multiplication mentioned in the Epilogue in Problem 2.  From 

Problem 2, let’s compute the convolution of ℎ1[𝑛] and ℎ2[𝑛] using z-domain techniques: 

𝑍{ℎ1[𝑛] ∗ ℎ2[𝑛]} = 𝐻1(𝑧) 𝐻2(𝑧) 

𝐻1(𝑧) = 𝑍{𝛿[𝑛] − 𝛿[𝑛 − 1]} = 1 − 𝑧−1 

𝐻2(𝑧) = 𝑍{𝛿[𝑛] + 𝛿[𝑛 − 2]} = 1 + 𝑧−2 

𝐻1(𝑧) 𝐻2(𝑧) = (1 − 𝑧−1)(1 + 𝑧−2) = 1 − 𝑧−1 + 𝑧−2 − 𝑧−3 

ℎ1[𝑛] ∗ ℎ2[𝑛] = 𝑍−1{𝐻1(𝑧) 𝐻2(𝑧)} = 𝑍−1{1 − 𝑧−1 + 𝑧−2 − 𝑧−3} 

ℎ1[𝑛] ∗ ℎ2[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − 𝛿[𝑛 − 3] 


